
PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 1

Fractional Super-Resolution of Voxelized
Point Clouds

Tomás M. Borges, Diogo C. Garcia, Senior Member, IEEE, and Ricardo L. de Queiroz, Fellow, IEEE

Abstract—We present a method to super-resolve voxelized
point clouds downsampled by a fractional factor, using lookup-
tables (LUT) constructed from self-similarities from their own
downsampled neighborhoods. The proposed method was devel-
oped to densify and to increase the precision of voxelized point
clouds, and can be used, for example, as improve compression
and rendering. We super-resolve the geometry, but we also
interpolate texture by averaging colors from adjacent neighbors,
for completeness. Our technique, as we understand, is the
first specifically developed for intra-frame super-resolution of
voxelized point clouds, for arbitrary resampling scale factors.
We present extensive test results over different point clouds,
showing the effectiveness of the proposed approach against
baseline methods.

Index Terms—Point clouds, super-resolution, resampling.

I. INTRODUCTION

AMONGST 3D representation alternatives, point-cloud
(PC) imaging gained popularity due to its relatively low-

complexity and high-efficiency in capturing, encoding, and
rendering of 3D models. A PC is a list of points in the 3D
space, each with spatial coordinates (x, y, z) and attributes like
colors, normals, reflectances, etc. For a single-color (RGB)
attribute per point, a PC is defined by its geometry V and its
color C sets:

V = {v(k)}, with v(k) = (xk, yk, zk), and

C = {c(k)}, with c(k) = (Rk, Gk, Bk).

Occupied points can have any (x, y, z) real values, however
this makes PCs cumbersome to process and encode. Over the
past years, The Moving Picture Expert Group (MPEG) has put
an effort to develop efficient point cloud compression (PCC)
techniques and standardization [1], [2]. One of the require-
ments imposed by current MPEG PCC standards is the use of
voxelized PCs, in which points are made to lie in an integer
grid such that their geometry is quantized. Input coordinates
are transformed such that all points lie within a bounding cube
[0, 2d)3, for some non-negative integer parameter d. Voxels
(volume elements) represent the center of any of the unit cubes
[i− 0.5, i+ 0.5)× [j − 0.5, j + 0.5)× [k − 0.5, k + 0.5), for
i, j, k integers between 0 and 2d − 1. Duplicate points inside
a voxel are usually merged and their attributes are averaged.

Work partially supported by CNPq under grants 88887.600000/2021-00 and
301647/2018-6.

T. M. Borges is with the Electrical Engineering Department at Universidade
de Brasilia, Brasilia, Brazil, e-mail: tomas@divp.org.

D. C. Garcia, is with the Gama Engineering College, Universidade de
Brasilia, Brasilia, Brazil, e-mail: diogogarcia@unb.br.

R. L. de Queiroz is with the Computer Science Department at Universidade
de Brasilia, Brasilia, Brazil, e-mail: queiroz@ieee.org.

The resampling of PCs, i.e., the changing in the number
of points of a PC, can be approached in two ways. The first
decimates/populates points in the original set without changing
the voxel resolution. We refer to this as set resampling. The
second approach changes the number of points by revoxelizing
the PC using a different size of voxel, i.e., changing the
volumetric resolution. We refer to it as grid resampling.
Applications that require the downsampling of PCs, such as
lossy-compression and rendering, can profit from methods that
create high-resolution (HR) PCs from low-resolution (LR)
versions, i.e., super-resolution (SR). In this paper, we propose
an SR method that takes a grid-downsampled LR voxelized
PC as input and combines the restrictions imposed by the
grid, its density, and self-similarities to output a grid-super-
resolved version of that input. One popular way to organize the
points is to use octrees [3]. For example, MPEG’s Geometry-
based PCC (G-PCC) uses pruned octrees combined with other
techniques for lossy-compression [1], [2], [4], [5]. PC SR
methods involving octrees have not been well-explored and
may be useful in rendering and compression, as well as in
other typical SR applications, such as reduced PC capture
resolution and enhancement of inadequately-captured PCs.

Although many approaches exist, often they cannot be
directly compared because of different number of inputs,
different LR versions, or even the use of extra information.
In optimization-based PC SR, a cost function is defined, then
new points are added to minimize this function. Alexa et
al. [6] proposed constructing a Voronoi diagram on the 3D
surface, then inserting points in the vertices to minimize a
moving least squares (MLS) cost function. Other works were
also developed using the MLS cost function [7], [8], but tend
to over-smooth the geometry. Huang et al. [9] introduced
an edge-aware solution to mitigate the over-smoothness of
prior methods, relying on the accuracy of normals and on a
thorough parameter tuning. Hamdi-Cherif et al. [10] combined
local descriptors by their similarities for PC SR, however
this approach required several PCs (multiple scans), normals
calculations, and assumed surface smoothness. Dinesh et
al. [11], [12] used Delaunay triangulation in the LR PC and
optimize an L1-norm graph-total-variation (GTV) cost func-
tion for neighborhood surface normals. It promotes piecewise
smoothness in reconstructed 2D surfaces, under the constraint
that the LR coordinates are preserved. The optimization-based
SR methods we have found were developed for static non-
voxelized PC, and are considered set upsamplings. Dinesh et
al. did use one voxelized PC in their tests [12], but it was
unclear if the SR version was still voxelized.

Deep learning was used for PC SR with the introduction of



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 2

PU-NET by Yu et al. [13], which learns multi-scale features by
downsampling the input and expands the point set via multi-
branch multilayer perceptrons (MLP). Yu et al. also proposed
EC-NET [14], an edge-aware network for point consolidation,
alas, it requires a very expensive edge-notation for training.
Wang et al. [15] proposed a progressive network, 3PU, to
suppress noise and to preserve details in the upsampling ge-
ometry. It is computationally expensive, though, and requires a
lot of training data. PU-GAN [16] was designed to obtain more
uniformly distributed SR results, with its major contribution
and performance gains coming from the discriminator part.
Graph convolutional networks (GCN) were used for PC SR
by Wu et al. [17], and by Qian et al. [18]. PUGeo-Net
[19] proposes to perform the upsampling by learning the
first and second fundamental forms to represent the local
geometry, although normals are required. Nonetheless, all
these networks require retraining when different upsampling
scales are required, making them cumbersome for dynamic
applications. Recently, an independent work by Ye et al. [20]
proposed Meta-PU, a network that supports upsamplings for
arbitrary scales without the need of retraining, using meta-
learning to predict the weights of the network and dynamically
change behavior for each scale factor. The type of upsampling
and the PC standards needed for data-driven methods could
change with retraining. Yet, all the works we have found
were trained with and promoted set upsampling for static non-
voxelized PC. LiDAR PCs were also tested [16], [18], [19].

Previous methods did not consider voxelization, so it is
not guaranteed they would work with technologies that have
such requirement, e.g., G-PCC. Octree-based PC SR, on the
other hand, already copes with those requirements. Such
methods usually exploit spatial correlation from the tree to
expand pruned branches, thus improving precision and adding
new points to the geometry (grid upsampling). Garcia et
al. developed two SR methods for dynamic PCs based on
statistics gathered in previous frames of the sequence: SR by
example and SR by neighborhood inheritance [21]. The first
explores similarities between time-adjacent frames to predict
voxels at higher levels of the octree [22]. The LR frame is
super-resolved using the similarities from the previous frame at
full-resolution. The second creates a dictionary of child nodes
based on the neighborhood configuration from previous full-
resolution frames. Then, the neighborhood from each occupied
voxel is used to estimate its child nodes.

The proposed method is an expansion of the neighborhood
inheritance method [21], where we removed the need for extra
PCs during dictionary creation (intra SR), and we developed a
better understanding of fractional resampling, which allowed
for arbitrary scale factors and not only powers of 2.

II. POINT CLOUD RESAMPLING

A. Downsampling

In set downsampling, points are usually decimated using
some distance-based criterion, like Poisson disk sampling [23].
This approach reduces the PC density, since it is not relative to
voxel size, and creates “holes” and “isolated points”, reducing
spatial correlation and, thus, affecting coding efficiency.

Fig. 1: Downsampling approaches. Original PC (857,966
voxels), set downsampling (64,176 voxels D1PSNR = 61.5dB),
and grid downsampling (62,130 voxels, D1PSNR = 58.4dB).

In grid downsampling, points are decimated through vox-
elization. While the resolution is lowered, the density in-
creases, compared to the original PC, thus rendering a
“blocky” geometry. The remaining points in the LR PC cannot
be rescaled to its original resolution without error. Figure 1
illustrates PC downsampling using both approaches to arrive
at approximately the same number of points. In order to
compare both PCs, the grid-downsampled one was expanded
and rendered with larger voxels. We also show distortion
numbers using the D1PSNR metric, described in Sec. IV.

Grid downsampling can be achieved by dividing the geom-
etry V by a scale factor s > 1, and rounding the results to
snap them to yet another integer grid. Duplicate points are
merged, and their textures are averaged. Thus, we achieve a
downsampled geometry Vd using:

Vd = unique

(
round

(
V

s

))
, (1)

where unique(X) is the function that only returns the unique
vectors in the set X , and round(·) is the function that
rounds the components of a vector to the nearest integer. The
consolidation of duplicate position information is similar to
the voxelization process.
Vd and V form a hierarchical tree structure, such that the

former represents parent nodes, and the latter represents child
nodes. This is illustrated in 1D in Fig. 2, where we can see that
when s is an integer, the number of child nodes is equal for
all coordinates in x. This downsampling process is regular as
all parent nodes have the same number of children. However,
when s is not an integer, the number of child nodes varies
depending the parent node’s coordinate. For 1 < s < 2, there
are parent coordinates with only one child (uniparous) and
others with two children (multiparous).

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5

(a) s = 2

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8

(b) s = 1.25

Fig. 2: Illustration of the downsampling process over a fully-
occupied single-axis x. It is also possible to see a hierarchical
tree configuration with xd as parent nodes of x.

In 3D, regular downsampling (integer values of s) translates
to every group of voxels in a s×s×s cube in V being reduced



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 3

to just one voxel in Vd, as depicted in Fig. 3(a). For this case,
parent nodes in Vd have s3 children. This represents a pruning
of the original octree structure. When s = 2n, n = 1, 2, 3, . . . ,
the pruning occurs exactly1 at level d − n. When s ∈ Q,
parent nodes in Vd have up to s3 children. For example, when
1 < s ≤ 2 parent nodes may have 1, 2, 4 or 8 children,
depending on each parent node’s coordinate value, as depicted
in Fig. 3(b). If a parent node has x multiparous, and y and z
uniparous, it, thus, has 2 · 1 · 1 = 2 child nodes, and at least
one of them must have been occupied in V . The number of
possible children for a given parent can be generalized as

imax = (⌈s⌉ − 1)u⌈s⌉m, (2)

where u is the number of uniparous coordinates, m the number
of multiparous coordinates (here we extend the meaning
of uniparous to indicate parents with fewer children than
the multiparous ones), and ⌈ ⌉ means the ceiling operator.
Although a non-integer value of s produces an irregular voxel
grid, there is a pattern on such grid when s is rational in the
form p/q, for p > q. We call fractional resampling the use of
a non-integer value of s to perform down- or upsampling.

(a) s = 2 (b) s = 1.25

Fig. 3: Downsampling in the voxel grid. For a fractional value
of s in (b) the different parenthood relationships are manifest.

B. Upsampling

We define PC grid upsampling as the inverse of the just-
defined grid downsampling process. The space of the bounding
cube containing the voxelized PC is again re-quantized, this
time to increase spatial resolution. It can be done by the simple
expansion of the downsampled geometry,

Ve = round (Vd · s) . (3)

However, it yields a very sparse PC. In order to densify the
upsampled version, we need to interpolate the missing points.
The baseline technique for completing the missing points
is the nearest-neighbor interpolation (NNI), which sets as
occupied all children from the parent nodes in Vd. The texture
upsampling for the NNI usually follows the same idea used for
the geometry: the colors from parent nodes are just replicated
to their corresponding children. Figure 4 illustrates what
happens to a geometry after being downsampled, expanded,
and, finally, upsampled using NNI.

To express the NNI, we have that all child nodes {vu(i)}
from a parent voxel vd(k) satisfy,

vd(k) = round(vu(i)/s), (4)

1The term exactly is somewhat relaxed here because of the use of round.
To get the strictly exact pruning equivalence, Eq. (1) should be defined using
the floor function instead.

(a) V (b) Vd (c) Ve (d) Vu

Fig. 4: Illustration of the NNI upsampling for s = 2: (a) child
nodes (V ) surrounded by its parent nodes; (b) parent nodes
(Vd); (c) expanded geometry; (d) NNI upsampling.

for every i = 1, 2, . . . , imax. Inversely,

vu(i) = round(s · vd(k)) + ϵ(i), (5)

where ϵ(i) is the rounding error. Let E(k) = {ϵ(i)} be the set
containing all the imax error samples for the parent node vd(k).
Thus, the set containing all possible children from vd(k) is

Vu(k) = round(s · vd(k)) + E(k). (6)

Therefore, the geometry from the NNI upsampling is

Vu = unique

(
K⋃

k=1

Vu(k)

)
. (7)

The colors for Vu(k) are Cu(k) = {cu(i)}, i = 1, 2, . . . , imax,
such that, cu(i) = cd(k), and

Cu =

K⋃
k=1

Cu(k). (8)

In order to improve the quality of the upsampled geometry
Vu, further processing can be applied to smooth both its
geometry and its texture. Laplacian smoothing (LS) [24], for
example, is used to smooth meshes and can be adapted to
work on PCs. Briefly, with LS, for each occupied voxel in a
given input PC, its 3×3×3 neighborhood is analyzed, and the
average voxel position is computed. This average is rounded
to the integer grid, and it becomes the center voxel’s new
position. Once the geometry smoothing is complete, output
voxels receive attributes from their nearest neighbors in the
input PC. If there is an input voxel at the same position,
the output voxel inherits its attributes. Otherwise, the average
attribute of the nearest neighbors is used. LS can improve NNI
results by reducing the aliasing caused by coarse interpolation.

III. INTRA-FRAME SUPER-RESOLUTION OF VOXELIZED
POINT CLOUDS

A. Proposed SR geometry method

The idea of using a dictionary of child nodes was first used
by Garcia et al. [21]. It was devised for the inter-frame case
to super-resolve LR frames downsampled by a scale factor of
s = 2n. In their research, a dictionary, or look-up-table (LUT),
relating child nodes to neighborhood configuration was created
from an HR reference frame. SR was achieved by matching
LR voxels’ neighborhood configuration with the correspondent
child occupancy given by the previously built LUT.

We developed our method using a similar process, i.e.,
relating child nodes with neighborhood configuration. How-
ever, the dictionary is now built using the very same PC



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 4

we want to super-resolve. Furthermore, we introduce frac-
tional downsampling. Hence, an additional step for geometry
classification was developed to cope with irregularities of
such downsampling, preserving the parent-child relationship
in the upsampling scheme. Our method’s general scheme is
illustrated in Fig. 5. The steps in gray boxes are as follows.

Fig. 5: General scheme of the proposed method.

Neighborhood definition: For each voxel, we verify its
surroundings to define its neighborhood occupancy. Let
φM (v(k)) be a (M3 − 1)-binary number indicating the
occupancy of neighbor voxels inside an M × M × M cube
around voxel v(k). The smallest neighborhood, M = 3, leads
to 33 − 1 = 26 neighbors (adjacent voxels).

Children definition: Let the child occupancy configuration
of parent voxel vd(k) be defined as σ(vd(k)), a ⌈s⌉3-binary
number indicating which of the possible children of vd(k),
i.e., Vu(k) in our notation, are indeed occupied. Unlike [21],
we take the input geometry Vd and perform yet another
downsampling using potentially the same scale factor2 s, as the
one used to arrive in Vd, to generate the parent geometry Vd2 .
In this way, we can define the child occupancy configuration
for each parent voxel σ(vd2(k)). In Fig. 6, we illustrate the
mapping of neighborhood and child occupancies.

Geometry classification: We divide downsampled voxels
into classes, depending on the position and number of possible
children, i.e., which values of (x, y, z) are uniparous and
which are multiparous. By doing so, we avoid dealing with
grid irregularities. Figure 7 illustrates the eight possible classes
for the geometry, for a scale factor 1 < s ≤ 2. This module is
used whenever we need to estimate child nodes in a fractional

2The assumption of a known s is made so we can compare the super-
resolved PC with its original version. This is true for compression post-
processing applications. When the original value of s is unknown, the method
can still be used, but without being able to arrive at the original resolution.

z
xy

z
xy

Fig. 6: On the left, the order of bits representing neighbors
(red) and children (black). On the right, an example of neigh-
borhood where φ3 = 00011101111100001000000000

and σ = 11101000.

xyz multiparous

xy uniparous
z multiparous

x uniparous
yz multiparous

xz uniparous
y multiparous

y uniparous
xz multiparous

yz uniparous
x multiparous

z uniparous
xy multiparous

xyz uniparous

y
zx

y
zx

y
zx

y
zx

y
zx

y
zx

y
zx

y
zx

Fig. 7: The 8 classes of geometry classification for 1 < s ≤ 2.

grid. It is used for defining children’s occupancies, building
the LUT (allowing for the creation of one LUT for each class),
and in the upsampling module.

LUT building: For each voxel in Vd2 from each class, we
can relate its neighborhood φM (vd2(k)) with its occupied
children σ(vd2(k)). Thus, we can create one LUT for each
class that will tell us how to upsample a parent voxel
depending on its neighborhood. Each LUT should pair all the
2M

3−1 possible neighborhood configurations with an output
child occupancy. The m-th entry of each LUT is created by
estimating the most likely child occupancy for φM (m),

σ̄(m) = E{σ(vd2(k)) | φM (m)}, (9)

i.e., the expected value (bitwise mean) of all child occupancies
sharing the same neighborhood configuration. Neighborhood
configurations not present in the input data are associated with
fully-occupied child nodes.

In order to save memory, we can store only the Nf

found neighborhoods, and infer the missing entries as having
fully-occupied child states in the upsampling module. In this
way, each LUT is an Nf -by-2 array, pairing a neighborhood
configuration in the first column with its correspondent child
occupancy in the second column. Creating and storing LUTs
for PCs with millions of points is somewhat memory-intensive.
Because of that, and due to empirical findings, some con-
straints were imposed. For a symmetric neighborhood, M
should be odd. As M increases by a single step, from 3 to
5, the possible neighborhood configurations go from 226 to
2124. It is impractical to use large values of M because it
takes more computational effort to find a larger neighborhood.
Furthermore, the entries of such large dictionary become
overly specific, and the output geometry approaches the NNI



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 5

upsampling. For this reason, we decided to fix M = 3,
such that, whenever φ(k) is mentioned, it is implicit that a
neighborhood size 3, φ3(k), is considered.

Due to memory and software limitations, we were limited
to s ≤ 3. Moreover, as s increases, the number of meaningful
entries in the dictionary decreases, since there is not much
information in the lower levels of the geometry. As s increases,
the probability of making a right guess about the estimated
children is dramatically reduced, from 1/255 for 1 < s ≤ 2,
to 1/19.982 for 2 < s ≤ 3. In other words, the preservation
of self-similarities is diminished with the increase of s. Thus,
we decided to constrain the values of s, {s ∈ Q | 1 < s ≤ 2}.
Inside this interval, we can profit from partial downsampling
and super-resolve a full octree level. If s > 2 is required, the
proposed SR method can still be used in a cascading manner.
For example, by performing t = ⌈log2(s)⌉ nested SRs with
a new scale factor s′ ≈ t

√
s. Empirically, we have noticed

that consecutive upsamplings work better than a single one
for s > 2, although slower.

As a means of data augmentation, we applied incremental
translations to the input frame to increase the LUT population.
Since 1 < s ≤ 2, shifts of ±1 in each axis are sufficient to
change the result of Eq. (1), and the parent geometry classifi-
cation. Other transformations, such as rotation or scaling, are
left to future work.

Upsampling: The upsampling module first performs the
NNI in the input PC, in order to locate all possible children
of each parent. Then, it removes extra points using the LUTs.
We label each voxel in Vd and use the correspondent LUT, for
each class, to consult which of the voxels from the NNI should
be removed, based on φ(vd(k)). We super-resolve from Vd to
a higher resolution Vsr by carving the NNI geometry. The set
of super-resolved children from a single parent voxel vd(k) is

Vsr(k) = Vu(k | σ̄(vd,j(k))), (10)

where σ̄(vd,j(k)), found by consulting LUTj for φ(vd,j(k)),
indicates that a given neighborhood configuration determines
which of the possible children of vd(k) should be set as
occupied, and 0 ≤ j ≤ 7 indicates the geometry class (Fig.
7). The super-resolved geometry is the union of all Vsr(k) as

Vsr =

K⋃
k=1

Vsr(k). (11)

B. Color interpolation

In order to find the texture for the upsampled geometry, the
usual approach is to first represent the LR geometry at the
same scale as the SR geometry, then to interpolate the colors
for the SR voxels using a distance-based weighted average of
the LR colors, taken over a 3× 3× 3 neighborhood.

We can improve the interpolation method by borrowing
the color prediction scheme used in G-PCC. In the transform
domain prediction of region-adaptive hierarchical transform
(RAHT) coefficients [1], [5], the estimated color for each
occupied child is the average of the parent’s color, with the
colors of the “uncles” that share an edge with that child, as
illustrated in Fig. 8. The average is weighted by the inverse

distance between each parent and the current child being
estimated. We refer to this method as the weighted average of
adjacent neighbors (WAAN). A variable weight ζ, dependent
of s, is introduced in the WAAN to take into account the idea
that the parent color should be more important as the scale
factor decreases.

(b)(a)

Fig. 8: Illustration of the neighbors used in the WAAN
calculation. (a) For the highlighted child, only “uncles” sharing
an edge with it are considered. (b) The distances δℓ, from the
child node to its “uncles”.

Thus, Csr(k) = {csr(i)} is the set containing the respective
colors of Vsr(k) of a given parent vd(k), such that:

csr(i) =
cd(k) + ζ

∑
ℓ

δ−1
ℓ cd(ℓ)

1 + ζ
∑
ℓ

δ−1
ℓ

, (12)

where ℓ is the index of the occupied voxels in Vd sharing
an edge with vsr(i), and the δℓ are their Euclidean distance
(Fig. 8(b)). ζ was empirically found as ζ = δ1s/8. The super-
resolved colors are

Csr =

K⋃
k=1

Csr(k). (13)

IV. PERFORMANCE ASSESSMENT AND ANALYSIS

A. Datasets and test conditions

We focused on PCs of static objects and scenes from the
MPEG’s G-PCC common test conditions (CTC) [25]. We set
a point cap of just over 4 million voxels, due to the current
implementation’s memory restrictions. Table I summarizes
information on the tested PCs, divided by categories in which
the PCs share similar metrics. In the table, ρφ is a density
measure: average number of occupied neighbors to any given
occupied voxel. ρφ is divided by 26 to be a relative measure.
The column “Vox.” indicates whether the PC required to be
revoxelized as a pre-processing step. The revoxelization was
done in two cases: to reduce PCs having more than our point
cap, and to increase density of extremely sparse clouds, where
a downsample using s = 2 would decimate less than 1% of
the original points. Figure 9 illustrates the chosen PCs.
ρφ can be used as a performance predictor of the proposed

method, since we rely on similarities at different scales. Those
are somewhat maintained for dense PCs, but not so much for
sparse ones. We empirically found that when ρφ is beyond
0.3 or so, the PC has watertight projections, i.e., there is a
one-to-one relationship between rendered pixels and voxels



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 6

(a) longdress (b) boxer (c) thaidancer

(k) facade_09

(d) basketball_player (e) queen (f) ricardo9

(g) head (h) statue_klimt (i) biplane (j) arco_valentino (l) house

Fig. 9: Representative viewpoints of some of the human figures from (a) to (f), and of the objects from (g) to (l).

TABLE I: Summary of tested PCs.

Point clouds Vox. Depth # voxels ρφ

(a) Group: 8i vox10 [26]†
longdress vox10 1300 ✗ 10-bit 857,966 0.429
loot vox10 1200 ✗ 10-bit 805,285 0.428
redandblack vox10 1550 ✗ 10-bit 757,691 0.433
soldier vox10 0690 ✗ 10-bit 1,089,091 0.432

(b) Group: 8i vox12 [27]‡
boxer viewdep vox12 ✗ 12-bit 3,493,085 0.031
longdress viewdep vox12 ✗ 12-bit 3,096,122 0.027
loot viewdep vox12 ✗ 12-bit 3,017,285 0.029
redandblack viewdep vox12 ✗ 12-bit 2,770,567 0.025
soldier viewdep vox12 ✗ 12-bit 4,001,754 0.026

(c) Thaidancer viewdep vox12 [27]‡ ✗ 12-bit 3,130,215 0.332
(d) Group: owlii [28]‡

basketball player vox11 00000200 ✗ 11-bit 2,925,514 0.452
dancer vox11 00000001 ✗ 11-bit 2,592,758 0.445

(e) queen frame 0200‡ ✗ 10-bit 1,000,993 0.524
(f) Group: MVUB [29]†

andrew9 0000 ✗ 9-bit 279,664 0.547
david9 0000 ✗ 9-bit 330,797 0.542
phil9 0000 ✗ 9-bit 370,798 0.543
ricardo9 0000 ✗ 9-bit 214,656 0.550
sarah9 0000 ✗ 9-bit 302,437 0.538

(g) Head 00039 vox12‡ ✓ 9-bit 938,112 0.532
(h) 1x1 Biplane Combined 000† ✓ 10-bit 1,181,016 0.567
(i) Statue Klimt vox12‡ ✓ 10-bit 483,068 0.209
(j) Arco Valentino Dense vox12‡ ✗ 12-bit 1,481,746 0.025
(k) Facade 00009 vox20‡ ✓ 11-bit 1,560,786 0.165
(l) House without roof 00057 vox12‡ ✓ 11-bit 3,638,139 0.247
† https://jpeg.org/plenodb/
‡ https://mpegfs.int-evry.fr/mpegcontent/

without holes3. We consider PCs with watertight projections
to be somewhat dense. If, however, ρφ is below 0.3, we
considered the PC to be sparser, as there will likely be holes
in its projections. If ρφ = 0 for a given neighborhood size
M , but ρφ > 0 for a neighborhood size M ′ > M , then it is

3These findings consider an orthographic voxel-based rendering approach,
with the voxel size adaptively following the grid size for different zoom levels.
We had not tested with other PC rendering approaches.

possible to reduce an initially assumed sparse PC into a dense
one at a lower resolution.

B. Self-similarities at different scales

The proposed SR method assumes that the geometry of
a PC is approximately self-similar at different scales. The
dictionaries are constructed using a coarser geometry and
applied to recreate a finer geometry. One way to verify the
preservation of similarities at different scales is to create a
dictionary using the original HR PC and to compare it with
the one created from the LR version.

In order to measure similarities, we calculated the Inter-
section over Union (IoU), i.e., the ratio of coincidence, for
different scales. We only considered the set of neighborhood
configurations contained in {φ(vd(k))}.

From Fig. 10, we see that similarity is mostly maintained
over 1 < s < 1.5, where there is a large number of uniparous
parents. There is a fast decay for 1.5 < s < 2, where
multiparous parents become the majority. Higher similarity
levels are found in “well-behaved” PCs, i.e., dense and with
smaller noise levels, which is the case of groups (a), (c), (d),
and (e). For sparse clouds, similarity is lower and usually
decreases faster with the increase of s. The exception being (j)
which seems to have a different behavior. However, this PC is
so sparse that most of its voxels are isolated, since ρφ = 0.025
indicates that each voxel has on average 0.65 neighbor. Thus,
its plot reflects only a handful of entries. For 2 < s < 3, the
similarity has a slower decay. Low IoU levels indicate that the
method would struggle for such scale factors. Note that IoU
only accounts for exact matches between dictionaries, but a
partial match can still be beneficial for our purposes.

C. Evaluation framework

We focused our evaluation in the range of 1 < s ≤ 2,
where we believe our method yields best results, regarding

https://jpeg.org/plenodb/
https://mpegfs.int-evry.fr/mpegcontent/


PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 7

1 1.5 2 2.5 3

Downsampling factor [s]

0

0.2

0.4

0.6

0.8

Io
U

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

Fig. 10: IoU measurements comparing LR with HR LUTs at
different scale factors.

complexity and distortion. For s > 2, the number of points
added by the NNI is quite large, and the self-similarities
are diminished, making the NNI carving less effective. We
compare the proposed method (LUT) with the NNI, and also
considered smoothing it using the LS technique (labeled as
NNI+LS). Since the NNI can be replicated by the renderer,
just by geometry expansion and using a larger cubic voxel
size, we chose not to use the WAAN for its colors to better
evaluate the trade-off between complexity and distortion. The
alternative for smoother colors is the NNI+LS.

Comparisons with other methods were not carried out
because they were developed with set downsampling in mind
and would require adaptations to work with grid-downsampled
LR PCs. Also, most of the deep learning methods would
require a lot of retraining to cope with the different scale
factors and with the real-world voxelized PCs of our test set.
The methods from Garcia et al. [21] also cannot be used
because they do not allow for fractional scale factors, nor do
they work for intra-frame SR.

The following PC metrics were chosen for the assessment.
• Point-based: Point-to-point (D1PSNR) [30], Point-to-plane

(D2PSNR) [31], and Luma end-to-end (Y-PNSR).
• Projection-based [32], [33]: PPSNR, PSSIM [34], and

PVIFp [35].
Point-based metrics: symmetrically computed, first using

the original PC as reference, then using the distorted super-
resolved version as reference. The final value is the maximum
error over the two measurements. Below is a brief description
of such metrics:

• D1: the average squared distance between each point in
the first PC and its nearest neighbor in the second one.

• D2: similar to the D1 metric, except that the distances are
projected to the normal direction before being averaged,
integrating local plane properties.

• Y-PSNR: RGB colors are converted to YUV709, then the
Y channel of each point in the first PC is compared to
the one from their nearest neighbors in the second PC.

D1 and D2 are converted to PSNR values using the PC’s
bounding cube’s diagonal length as the peak distance value.

Projection-based metrics: image metrics adapted for PCs.
They are referred with a preceding “P”, as in projected PSNR
(PPSNR). Voxels were rendered as cubes to get the projections,
and point size was set equal to 1. Although this choice of
rendering may generate holes in sparse PCs, different choices
could add rendering distortions to SR intrinsic artifacts. Six
orthographic projection views were used (the six faces of the
cube containing the PC). In this way, each visible voxel face is
projected into a single pixel, hence, a depth-10 PC will have
six 1024 × 1024 pixel projections. In order to decrease the
effect of the background in the metrics, its color was set to a
mid-gray value, and we only considered the rectangular region
formed by the union of the foregrounds of the reference and
the distorted projections, as suggested by Alexiou et al. [36].
The PPNSR is calculated in the RGB color space, taking the
average of the PSNR for each view:

PPSNR =
1

6

6∑
n=1

PSNRn. (14)

The calculation of PSSIM and PVIFp is similarly performed,
but only considering the Y channel, using YUV709 conversion.

D. Results

Table II shows the average gain of the NNI+LS and the LUT
approaches when compared to the NNI over all scale factors
1 < s ≤ 2. As we can see from this table, the proposed method
is superior to the baseline or its smoothed counterpart for every
content in almost every metric, especially when point-based
geometric metrics are considered.

Geometry distortion comparisons are presented in Figs. 11
and 12, for some of the PCs, over different values of s. The
plots derived from the LUT method typically replicate the
NNI, but with considerably less distortion.

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

75

80

85

D
1
 P

S
N

R
 [

d
B

]

D1 PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

80

85

90

D
1
 P

S
N

R
 [

d
B

]

D1 PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

65

70

75

D
1
 P

S
N

R
 [

d
B

]

D1 PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

70

75

80

D
1
 P

S
N

R
 [

d
B

]

D1 PSNR House

NNI
NNI+LS
LUT

Fig. 11: D1PSNR metric for PCs (b), (c), (h) and (l).

Y-PSNR plots are shown in Fig. 13, where it can be seen
that the proposed method outperforms the others for all PCs



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 8

TABLE II: Average gain over the NNI inside the interval 1.1 ≤ s < 2.

Point clouds D1PSNR [dB] D2PSNR [dB] Y-PSNR [dB] PPSNR [dB] PSSIM PVIFp

NNI+LS LUT NNI+LS LUT NNI+LS LUT NNI+LS LUT NNI+LS LUT NNI+LS LUT

(a) 8i vox10 3.27 5.47 4.29 5.91 0.17 1.95 2.06 3.80 0.02 0.03 0.06 0.04
(b) 8i vox12 -0.63 1.57 1.23 2.73 -2.79 2.84 -1.60 0.26 -0.13 -0.02 -0.16 0.02
(c) Thaidancer 2.85 4.57 3.67 5.26 0.14 2.92 2.42 4.28 0.01 0.02 0.06 0.05
(d) owlii 3.39 6.47 4.41 6.77 0.04 1.61 2.37 3.97 0.01 0.02 0.05 0.05
(e) queen 3.18 6.24 4.66 7.12 -0.99 0.76 1.27 3.84 0.01 0.02 0.05 0.08
(f) MVUB 2.72 3.98 4.10 4.80 -0.37 1.31 0.12 1.72 0.01 0.02 0.02 0.03
(g) Head 2.86 4.32 4.23 5.42 -0.69 -0.12 0.01 1.43 0.01 0.04 -0.03 -0.03
(h) Biplane 2.10 3.25 3.41 4.22 -0.82 -0.28 -0.54 0.86 -0.01 0.01 -0.05 -0.05
(i) Statue Klimt 0.88 0.75 1.75 1.16 -0.94 1.29 -0.55 0.30 -0.02 0.01 -0.06 -0.03
(j) Arco Valentino 0.00 0.93 0.03 1.02 -3.59 0.01 -0.09 1.02 -0.01 -0.03 -0.08 -0.30
(k) Facade 00009 0.61 1.43 1.88 2.29 -1.61 1.58 -0.93 0.04 -0.05 -0.01 -0.12 -0.06
(l) House 0.89 1.64 2.18 2.77 -1.16 0.74 -0.79 -0.04 -0.02 -0.01 -0.09 -0.04

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

80

82

84

86

88

D
2
 P

S
N

R
 [

d
B

]

D2 PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

80

85

90

D
2
 P

S
N

R
 [

d
B

]

D2 PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

70

75

80

D
2
 P

S
N

R
 [

d
B

]

D2 PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

75

80

85

D
2
 P

S
N

R
 [

d
B

]

D2 PSNR House

NNI
NNI+LS
LUT

Fig. 12: D2PSNR metric for PCs (b), (c), (h) and (l).

but Biplane. Note that the performance of texture metrics is
more affected by content, while the performance of geometry
metrics is more dependent on the PC acquisition source.

Plots with projection-based metrics are shown in Figs. 14,
15 and 16. Unlike the previous metrics, the rendering choice
plays a crucial part in the projections and in the subjective
evaluation. Holes caused by missing occupied children affect
more these metrics than the others, which occurs more fre-
quently for the sparser clouds.

Viewpoint projections comparing the ground truth (GT) with
the three upsampling methods for redandblack vox10 1550
and Biplane are shown in Fig. 17 for visual comparison.

We ran additional tests using PCs (a), (f), (g) and (h) for
s > 2, restricted to the D1PSNR metric, as shown in Fig. 18.
We used the cascading method to achieve those scale factors
for the LUT approach.

E. Analysis

As expected from Sec. IV-B, the “well-behaved” PCs
(a), (c), (d), and (e) were the ones that presented the best
performance for the proposed method.

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

40

45

50

55

Y
-P

S
N

R
 [

d
B

]

Y-PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

35

40

45

Y
-P

S
N

R
 [

d
B

]

Y-PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

20

22

24

26

Y
-P

S
N

R
 [

d
B

]

Y-PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

30

35

40

Y
-P

S
N

R
 [

d
B

]

Y-PSNR House

NNI
NNI+LS
LUT

Fig. 13: Y-PSNR metric for PCs (b), (c), (h) and (l).

There are odd cases such as occluded voxels with a different
color than their neighbors (queen), cropped edges (MUVB),
and noisy geometry scans, which degrade the performance of
the NNI+LS and the LUT approaches.

The NNI+LS method is significantly affected by noisy
and/or sparse geometries. In such cases, and for small scale
factors, its averaging approach causes a slight shift in some
voxels, which degrades distortion metrics. This behavior is
illustrated for D1PSNR and D2PSNR metrics for Biplane and for
8i vox12. As s increases and the NNI becomes more uniform
over all voxels, this shift in voxels is reduced, and the method’s
performance improves. This behavior is accentuated due to the
way point metrics are calculated, by using the maximum rather
than the average between the two-way measurements.

The poor performance in Y-PSNR for Biplane is due to
the significant amount of noise in its texture, which is hard
to replicate using texture interpolation solutions based on
smoothing neighboring colors. It is interesting to notice the
under-performance of texture for the NNI+LS method. For
lower values of s, many voxels already have the correct color
and applying a smoothing filter degrades the overall texture.



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 9

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

20

25

30

P
P

S
N

R
 [

d
B

]
Projected PSNR 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

30

35

40

45

P
P

S
N

R
 [

d
B

]

Projected PSNR Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

20

25

30

P
P

S
N

R
 [

d
B

]

Projected PSNR Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

22

24

26

28

30
P

P
S

N
R

 [
d
B

]

Projected PSNR House

NNI
NNI+LS
LUT

Fig. 14: Projected PSNR metric for PCs (b), (c), (h) and (l).

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.6

0.7

0.8

0.9

1

S
S

IM

Projected SSIM 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.94

0.96

0.98

1

S
S

IM

Projected SSIM Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.8

0.85

0.9

0.95

S
S

IM

Projected SSIM Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.8

0.85

0.9

0.95

S
S

IM

Projected SSIM House

NNI
NNI+LS
LUT

Fig. 15: Projected SSIM metric for PCs (b), (c), (h) and (l).

This is even worse for sparse PCs, where fewer neighbors
are available, which may cause abrupt changes of colors. For
s > 1.5, texture metrics for NNI and NNI+LS approaches are
comparable, but since the latter was worse for smaller s, it
ended up being worst overall on average. The main causes for
this are noise and the absence of texture information in the
neighborhoods for sparse PCs.

PPSNR results share some correlation with point-based
metrics since all of those are distance-based metrics, however,
the former evaluates the PC as a whole differently from the
latter, which separately considers geometry and attributes.
The low-values of PPSNR observed, particularly for sparse
PCs, could be increased if we changed the splat size, thus
making those PCs look denser, more comparable with the
outputs from the upsampling methods. PSSIM and PVIFp are

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0

0.2

0.4

0.6

0.8

V
IF

p

Projected VIFp 8i_vox12

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.8

0.85

0.9

0.95

1

V
IF

p

Projected VIFp Thaidancer

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.4

0.5

0.6

0.7

0.8

V
IF

p

Projected VIFp Biplane

NNI
NNI+LS
LUT

1 1.2 1.4 1.6 1.8 2

Downsampling factor [s]

0.2

0.4

0.6

0.8

V
IF

p

Projected VIFp House

NNI
NNI+LS
LUT

Fig. 16: Projected VIFp metric for PCs (b), (c), (h) and (l).

optimized for natural images, so it is hard to analyze their
results for the chosen rendering choice, since upsampling and
rendering artifacts are mixed. Thus, they cannot capture well
the distortions from the outputs of the upsampling methods in
sparse PC projections. They show a slight preference for the
denser clouds from the NNI approach, which resemble more
natural images, but are very content-depended, as pointed out
in [36]. For a more meaningful understanding of how these
metrics behave in the SR context, the rendering approach
should be changed and subjective tests performed.

The projections of Fig. 17 show that the PCs resulting
from the NNI are “bulky” and their texture “blocky”, with
a steep increase in the number of voxels. There are some
improvements for the NNI+LS method, but the geometry is
still jagged, and the number of voxels is still large. We can
see a large improvement for the LUT method, with much of the
aliasing removed, a finer texture, and a much more acceptable
number of voxels.

Although we can still observe some gains in the geometry
for the LUT method over the NNI for s > 2, in Fig. 18, the
output PCs have too many points, and in such cases, it should
be evaluated if the added complexity is worth the moderate
improvements to a very degraded input geometry. The dips
observed at s = 4 and s = 8 occur because of the use of
consecutive s = 2 upsamplings, which is the least effective
one for geometry carving. For other values of s, carving is
more aggressive, and results are better. This is not ideal and
is a point for improvement.

In Table III, we show the time profiling for some methods
and PCs. The current implementation was developed using
Matlab®/Octave® on a personal computer with Intel Core
i7-8550U CPU @ 1.80GHz, with cache size of 8MB and
16GB of RAM. It is possible to speed up the code by
removing or reducing the data augmentation step, but with
poorer results. For example, over 90% of complexity reduction
can be achieved with complete removal of data augmentation,



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 10

Fig. 17: PC Projections. On the top: redandblack vox10 1550 for s = 2. On the bottom: Biplane for s = 4.

2 4 6 8

Downsampling factor [s]

55

60

65

70

P
S

N
R

D
1
 [

d
B

]

D1 PSNR 8i_vox10

NNI
NNI+LS
LUT

2 4 6 8

Downsampling factor [s]

45

50

55

60

65

P
S

N
R

D
1
 [

d
B

]

D1 PSNR MVUB

NNI
NNI+LS
LUT

2 4 6 8

Downsampling factor [s]

45

50

55

60

65

P
S

N
R

D
1
 [

d
B

]

D1 PSNR Head

NNI
NNI+LS
LUT

2 4 6 8

Downsampling factor [s]

55

60

65

70

P
S

N
R

D
1
 [

d
B

]

D1 PSNR Biplane

NNI
NNI+LS
LUT

Fig. 18: D1 metric for PCs (a), (f), (g) and (h), for s > 2.

with an average penalty of 2dB on D1PSNR.

V. CONCLUSIONS

In this work, we presented a method for super-resolving
voxelized PCs at fractional scales, primarily targeted for
1 < s ≤ 2, in which self-similarities at lower scales are
used to define which of the possible children should be
occupied. Extensive results show that the proposed method
yields lower distortion results when compared to upsampling
by NNI, followed or not by smoothing. This is particularly
valid for point-based geometry-distortion quality metrics. For
projection-based quality metrics, a broader quality assessment
should be performed in order to better investigate if the sub-
jective preference is maintained. Although only static point-
clouds were used, the proposed method can be transferred

TABLE III: Time profiling for the tested methods.

Point Cloud s
Time [s] Output points

NNI LS LUT WAAN NNI NNI+LS LUT

Longdress
857,966

1.5 0.5 95.6 60.0 3.6 1,556,255 1,032,233 929,587
2.5 0.7 75.1 128.9 7.6 2,523,083 1,564,587 1,096,984
5 1.4 171.3 129.6 10.3 5,016,000 3,588,487 1,595,573

Andrew
279,664

1.5 0.2 11.2 17.6 1.1 456,393 302,379 303,353
2.5 0.2 17.9 35.0 2.2 699,850 461,764 370,598
5 0.3 83.3 35.3 3.2 1,316,050 957,647 562,290

Head
938,112

1.5 0.9 89.6 63.5 4.3 1,588,662 1,037,831 1,012,341
2.5 0.7 78.9 131.1 8.3 2,509,250 1,647,976 1,179,319
5 3.3 168.0 134.3 11.4 4,893,050 3,566,336 1,747,442

Biplane
1,181,016

1.5 0.6 58.0 76.8 6.0 1,898,394 1,294,955 1,316,698
2.5 0.8 91.8 167.1 11.2 2,845,701 1,916,829 1,541,756
5 3.4 193.1 147.3 14.0 5,004,325 3,867,418 2,193,157

to dynamic ones, probably with even better results, as more
frames are available to create the LUT. Future work may focus
on robustness against outlier regions in the PC. We also plan to
improve the super-resolution of sparse PCs and of attributes.

REFERENCES

[1] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression
standardization activities: video-based (V-PCC) and geometry-based (G-
PCC),” APSIPA Trans. Signal and Inf. Process., vol. 9, 2020.

[2] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou,
R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis,
and V. Zakharchenko, “Emerging MPEG Standards for Point Cloud
Compression,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 9, no. 1,
pp. 133–148, 2019.

[3] D. Meagher, “Geometric modeling using octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, Jun 1982.

[4] E. Pavez, P. A. Chou, R. L. de Queiroz, and A. Ortega, “Dynamic
polygon clouds: representation and compression for VR/AR,” APSIPA
Trans. Signal and Inf. Process., vol. 7, 2018.

[5] R. L. de Queiroz and P. A. Chou, “Compression of 3D point clouds using
a region-adaptive hierarchical transform,” IEEE Trans. Image Process.,
vol. 25, no. 8, pp. 3947–3956, aug 2016.



PREPRINT OF SUBMISSION TO IEEE TRANS. ON IMAGE PROCESSING 11

[6] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Trans. Vis.
Comput. Graphics, vol. 9, no. 1, pp. 3–15, 2003.

[7] G. Guennebaud and M. Gross, “Algebraic point set surfaces,” ACM
Trans. Graph., vol. 26, no. 3, p. 23, jul 2007.

[8] A. C. Öztireli, G. Guennebaud, and M. Gross, “Feature Preserving Point
Set Surfaces based on Non-Linear Kernel Regression,” Comput. Graph.
Forum, vol. 28, no. 2, pp. 493–501, apr 2009.

[9] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. R. Zhang,
“Edge-Aware Point Set Resampling,” ACM Trans. Graph., vol. 32, no. 1,
Feb. 2013.

[10] A. Hamdi-Cherif, J. Digne, and R. Chaine, “Super-Resolution of Point
Set Surfaces Using Local Similarities,” Computer Graphics Forum,
vol. 37, no. 1, pp. 60–70, jun 2017.

[11] C. Dinesh, G. Cheung, and I. V. Bajić, “3D point cloud super-resolution
via graph total variation on surface normals,” in IEEE Intl. Conf. Image
Process. (ICIP). IEEE, sep 2019.

[12] C. Dinesh, G. Cheung, and I. V. Bajić, “Super-Resolution of 3D Color
Point Clouds Via Fast Graph Total Variation,” in IEEE Intl. Conf.
Acoust., Speech, Signal Process. (ICASSP), 2020, pp. 1983–1987.

[13] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-net: Point
cloud upsampling network,” in IEEE/CVF Conf. on Comput. Vision and
Pattern Recog. (CVPR). IEEE, jun 2018.

[14] ——, “EC-net: An edge-aware point set consolidation network,” in
European Conf. on Computer Vision (ECCV). Springer Intl. Publishing,
2018, pp. 398–414.

[15] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung,
“Patch-Based Progressive 3D Point Set Upsampling,” in IEEE/CVF
Conf. on Comput. Vision and Pattern Recog. (CVPR). IEEE, jun 2019.

[16] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-GAN: a
point cloud upsampling adversarial network,” in IEEE Intl. Conf. on
Computer Vision (ICCV), Oct. 2019.

[17] H. Wu, J. Zhang, and K. Huang, “Point Cloud Super Resolution with
Adversarial Residual Graph Networks,” BMVC 2020, 2020.

[18] G. Qian, A. Abualshour, G. Li, A. Thabet, and B. Ghanem, “PU-
GCN: Point cloud upsampling using graph convolutional networks,” in
IEEE/CVF Conf. on Comput. Vision and Pattern Recog. (CVPR), 2021.

[19] Y. Qian, J. Hou, S. Kwong, and Y. He, “PUGeo-net: A geometry-centric
network for 3d point cloud upsampling,” in Computer Vision – ECCV
2020. Springer Intl. Publishing, 2020, pp. 752–769.

[20] S. Ye, D. Chen, S. Han, Z. Wan, and J. Liao, “Meta-PU: An arbitrary-
scale upsampling network for point cloud,” IEEE Trans. Vis. Comput.
Graphics, pp. 1–1, 2021.

[21] D. C. Garcia, T. A. Fonseca, R. U. Ferreira, and R. L. de Queiroz,
“Geometry Coding for Dynamic Voxelized Point Clouds Using Octrees
and Multiple Contexts,” IEEE Trans. Image Process., vol. 29, pp. 313–
322, 2019.

[22] D. C. Garcia, T. A. Fonseca, and R. L. de Queiroz, “Example-Based
Super-Resolution for Point-Cloud Video,” in IEEE Intl. Conf. Image
Process. (ICIP). IEEE, 2018, pp. 2959–2963.

[23] M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and Flexible
Sampling with Blue Noise Properties of Triangular Meshes,” IEEE
Trans. Vis. Comput. Graphics, vol. 18, no. 6, pp. 914–924, 2012.

[24] A. B. Yutaka and E. B. Y. Ohtake, “A Comparison of Mesh Smoothing
Methods,” in Israel-Korea BiNational Conf. on Geometric Modeling and
Comput. Graph., 2003, pp. 83–87.

[25] 3DG, “Common test conditions for point cloud compression,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), Gothenburg, SE, Ap-
proved WG 11 doc. N18883, July 2019.

[26] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i Voxelized
Full Bodies, version 2 – A Voxelized Point Cloud Dataset,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG), Geneva, input document
m40059/M74006, January 2017.

[27] M. Krivokuća, P. A. Chou, and P. Savill, “8i Voxelized Surface
Light Field (8iVSLF) Dataset,” ISO/IEC JTC1/SC29 Joint WG11/WG1
(MPEG/JPEG), Ljubljana, input doc. m42914, July 2018.

[28] Y. Xu, Y. Lu, and Z. Wen, “Owlii Dynamic Human Textured Mesh
Sequence Dataset,” ISO/IEC MPEG JTC1/SC29/WG11, Macau, China,
Tech. Rep. m41658, Oct. 2017.

[29] C. Loop, Q. Cai, S. Escolano, and P. Chou, “Microsoft voxelized upper
bodies - a voxelized point cloud dataset,” ISO/IEC JTC1/SC29 Joint
WG11/WG1 (MPEG/JPEG), input doc. m38673/M72012, May 2016.

[30] D. Girardeau-Montaut, M. Roux, R. Marc, and G. Thibault, “Change
detection on points cloud data acquired with a ground laser scanner,” in
ISPRS Workshop Laser scanning, G. Vosselman and C. Brenner, Eds.,
vol. XXXVI-3/W19. Enschede, NL: Intl. Society for Photogrammetry
and Remote Sensing, Sep. 2005, pp. 30–35.

[31] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in 2017 IEEE Intl. Conf.
Image Process. (ICIP), Sep. 2017, pp. 3460–3464.

[32] E. M. Torlig, E. Alexiou, T. A. Fonseca, R. L. de Queiroz, and
T. Ebrahimi, “A novel methodology for quality assessment of voxelized
point clouds,” in App. of Digital Image Process. XLI, A. G. Tescher,
Ed., vol. 10752, Intl. Society for Optics and Photonics. SPIE, 2018.

[33] R. L. de Queiroz and P. A. Chou, “Motion-Compensated Compression of
Dynamic Voxelized Point Clouds,” IEEE Trans. Image Process., vol. 26,
no. 8, pp. 3886–3895, Aug 2017.

[34] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. S. Simoncelli, “Image
Quality Assessment: From Error Visibility to Structural Similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, apr 2004.

[35] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb 2006.

[36] E. Alexiou, I. Viola, T. M. Borges, T. A. Fonseca, R. L. de Queiroz, and
T. Ebrahimi, “A comprehensive study of the rate-distortion performance
in MPEG point cloud compression,” APSIPA Trans. Signal and Inf.
Process., vol. 8, p. e27, 2019.


	Introduction
	Point cloud resampling
	Downsampling
	Upsampling

	Intra-frame super-resolution of voxelized point clouds
	Proposed SR geometry method
	Color interpolation

	Performance assessment and analysis
	Datasets and test conditions
	Self-similarities at different scales
	Evaluation framework
	Results
	Analysis

	Conclusions
	References

