
V

D
O
a

b

a

A
R
R
A
A

K
E
V
V
S

1

m
p
a
t
m

s
d
s
t
[
t
a
p
c

s
t
p
t

E
7

0
d

Electric Power Systems Research 79 (2009) 1441–1445

Contents lists available at ScienceDirect

Electric Power Systems Research

journa l homepage: www.e lsev ier .com/ locate /epsr

oltage unbalance numerical evaluation and minimization

iogo C. Garciaa,∗, Anésio L.F. Filhoa, Marco A.G. Oliveiraa,
nivaldo A. Fernandesb, Francisco A. do Nascimentoa

Universidade de Brasília, Brasília, Brazil
Centrais Elétricas do Norte do Brasil S.A – Eletronorte, Brasília, Brazil

r t i c l e i n f o

rticle history:
eceived 16 June 2008
eceived in revised form 22 April 2009

a b s t r a c t

Among a series of parameters, power quality studies are concerned with voltage unbalances, which repre-
sent the voltage magnitude and phase deviation from nominal values. In order to determine the influence
of the network’s parameters on voltage unbalances, and to provide exact solutions to reduce or even elim-
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inate them, the present study develops and presents two methods. First, a sensitivity analysis is used to
determine the influence of each parameter, and then analytical solutions are developed in order to provide
the changes needed for correction. The quantification index considered is the symmetrical components
method.

© 2009 Elsevier B.V. All rights reserved.
ensitivity analysis

. Introduction

Over the years, electric power quality has become one of the
ajor areas of research in electrical engineering. Of a series of

ower quality parameters, voltage unbalance has been considered
s one of the main topics of study. This attention is especially due
o the harmful effects this phenomenon has on tri-phase induction

achines, which constitute the majority of industrial loads.
Several studies have been conducted in an attempt to under-

tand the true consequences of the phenomenon. [1] presents the
ifferent quantification indexes created so far, and recommends the
ymmetrical components method as the most precise. [2] analyzes
he effect of the sequences’ angles on tri-phase induction machines.
3] and [4] show studies similar to [2], but take into considera-
ion the magnitude of the positive sequence. [5] demonstrates the
dvantages of the NEMA quantification method, and [6] and [7]
oint out the characteristics and inconveniences of these quantifi-
ation indexes.

These studies attempt to establish relationships between mea-

uring methods and physical effects of the voltage unbalance. On
he other hand, little effort has been made to determine the system’s
arameters influence on the phenomenon, and neither to calculate
he variations needed in order to reduce the unbalance.

∗ Corresponding author at: Lab. Qualidade, Prédio SG11, Departamento de
ngenharia Elétrica, Campus Universitário Darcy Ribeiro, Av. L3 Norte, Asa Norte,
0910-970 Brasília, DF, Brazil.

E-mail address: srcaetano@gmail.com (D.C. Garcia).

378-7796/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.epsr.2009.04.016
This paper presents and develops two methods. The first consists
of the use of sensitivity analysis to determine the influence on the
voltage unbalance for each parameter of the system (magnitudes
and angles of the three phases), and the second changes the unbal-
ance based on analytical solutions. The index used in both cases is
the symmetrical components method.

The paper is organized as follows: in Section 2, the two meth-
ods are outlined; in Section 3, unbalance situations are analyzed in
order to confirm the validity of these methods; and in Section 4,
general conclusions are made.

2. Analysis

To date, four methods for quantifying voltage unbalances have
been developed: NEMA, IEEE, symmetrical components and CIGRÉ.
The first two were created based on the fact that several com-
mercially available electricity meters were not able to measure the
angular differences between each phase. The symmetrical compo-
nents method relies on the Fortescue theorem, which represents
an unbalanced tri-phase system through the sum of three balanced
ones, and requires knowing the magnitudes and angular differences
of all phases. The CIGRÉ method offers the same result as the sym-
metrical components method, but only needs the magnitudes of
the voltages between phases.
The symmetrical components method is considered the most
rigorous of the four, best reflecting the configuration of the sys-
tem [1]. It is defined as the ratio between the magnitudes of the
negative- and positive-sequence voltage components (V2 and V1,
respectively). Eqs. (1)–(3) present the formulas for V1, V2, and for

http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:srcaetano@gmail.com
dx.doi.org/10.1016/j.epsr.2009.04.016
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he symmetrical components method (K).

1 = | 1
3 (VA + aVB + a2VC)| (1)

2 = | 1
3 (VA + a2VB + aVC)| (2)

= V2

V1
(3)

In Eqs. (1) and (2), VA, VB and VC are the phasors that represent
he voltages in phases A, B and C, and a = 1∠120◦.

Taking the above equations as a starting point, several devel-
pments can be made, simplifying the deduction of the methods
resented later in this study. First, the phasors for phases A, B and C

n Eqs. (1) and (2) are represented by their magnitudes (VA, VB and
C, respectively) and angles (�A, �B and �C, respectively), as shown

n Eqs. (4) and (5).

1 =
∣∣∣∣VA∠�A + VB∠(�B + 120◦) + VC∠(�C − 120◦)

3

∣∣∣∣ (4)

2 =
∣∣∣∣VA∠�A + VB∠(�B − 120◦) + VC∠(�C + 120◦)

3

∣∣∣∣ (5)

Next, after calculating the magnitudes indicated above, the
quare root and the multiplying term 1/3 can be eliminated, result-
ng in Eqs. (6) and (7).

V2
1 =

{
VAcos �A + VBcos(�B + 120◦) + VCcos(�C − 120◦)

}2

+
{

VAsin �A + VBsin(�B + 120◦) + VCsin(�C − 120◦)
}2

(6)

V2
2 =

{
VAcos �A + VBcos (�B − 120◦) + VCcos (�C + 120◦)

}2

+
{

VAsin �A + VBsin (�B − 120◦) + VCsin (�C + 120◦)
}2

(7)

The squared terms on the right side of Eqs. (6) and (7) can be
urther developed, resulting in Eqs. (8) and (9), where �AB = �A − �B,
BC = �B − �C and �CA = �C − �A.

V2
1 = V2

A + V2
B + V2

C + 2VAVBcos(�AB − 120◦)

+ 2VBVCcos(�BC − 120◦) + 2VAVCcos(�CA − 120◦) (8)

V2
2 = V2

A + V2
B + V2

C + 2VAVBcos(�AB + 120◦)

+ 2VBVCcos(�BC + 120◦) + 2VAVCcos(�CA + 120◦) (9)

Now, the right side of Eq. (3) can be multiplied and divided by
hree, squared and root-squared, resulting in Eq. (10).

=
√

9V2
2

9V2
1

(10)

Eqs. (8)–(10) will be used throughout the rest of this work. In
he next two sections, an analysis of the voltage unbalance and

inimization methods will be presented.

.1. Sensitivity of the voltage unbalance

Sensitivity analysis is a mathematical tool commonly used in
lectrical engineering, especially in control theory [8]. Its goal is

o determine the change in a system subject to variations in its
arameters. Mathematically speaking, it can be defined as a rela-
ionship between a parameter vector � = (˛1˛2 . . . ˛r)T and a vector
= (�1�2 . . . �n)T, representing the dynamic response of the sys-

em. Furthermore, vectors � and � can be defined as the sum of
s Research 79 (2009) 1441–1445

two vectors, one being the nominal values (˛0 and �0, respectively)
and the other being the variations around the nominal values (�˛
and ��, respectively). Eqs. (11) and (12) present the corresponding
formulas.

˛ = ˛0 + �˛ (11)

� = �0 + �� (12)

The sensitivity equation (S) is defined as a mathematical rela-
tionship between the parameter variation and system response
variation vectors, �˛ and ��, around their nominal values, Eq. (13).
This is a first-degree approximation, being valid under certain conti-
nuity conditions and for small parameter variations (||˛0|| � ||�˛||).
�� ≈ S(˛0)�˛ (13)

The absolute and relative sensitivity functions, S�i˛j
and S

�i
˛j

, are
presented in Eqs. (14) and (15), where i = 1, 2, . . ., n, and j = 1, 2, . . .,
r.

S�i
˛j

= ∂�i

∂˛j
| (14)

S̄�i
˛j

= ∂�i/�i

∂˛i/˛i
| = S�i

˛j

˛j0

�i0
(15)

Sensitivity analysis can be used to determine the influence of
each phase parameter on the voltage unbalance. Defining ˛0 as the
magnitude and angle values of the three phases in an unbalanced
situation, and �0 as the corresponding K index for these values, the
absolute and relative sensitivity functions can be obtained. They
represent the change rate of the voltage unbalance, according to
changes in each parameter, as indicated in Eqs. (14) and (15). A
comparison of these rates indicates to which parameter the volt-
age unbalance is more sensitive. To avoid comparing terms having
different dimensions, only the relative sensitivity function will be
considered.

A direct application of Eq. (15) in (10) is presented in (16), where
˛j can be equal to VA, VB, VC, �A, �B or �C. This produces very complex
derivatives, requiring a few simplifications. First, the derivative of
the square root is developed in (17). Next, the quotient rule for the
derivative is applied, and the resulting expression is simplified in
(18). A comparison between this last equation and (15) shows the
presence of the expressions for the relative sensitivity functions of
9V2

2 and 9V2
1 , as indicated in (19).

S̄K
˛j

= ˛j

√
9V2

1

9V2
2

∂

∂˛j

(√
9V2

2

9V2
1

)
(16)

S̄K
˛j

= ˛j

2
9V2

1

9V2
2

∂

∂˛j

(
9V2

2

9V2
1

)
(17)

S̄K
˛j

= 1
2

(
˛j

9V2
2

∂(9V2
2 )

∂˛j
− ˛j

9V2
2

∂(9V2
1 )

∂˛j

)
(18)

S̄K
˛j

= 1
2

(S̄9V2
2

˛j
− S̄9V1

2

˛j
) (19)

Eq. (19) shows that the relative sensitivity functions of K (S
K
VA

,

S
K
VB

, S
K
VC

, S
K
�A

, S
K
�B

and S
K
�C

, respectively, since ˛j can be equal to VA,
VB, VC, �A, �B or �C) can be developed through the differentiation of
(8) and (9), which turn out to be simpler expressions. For the sake
of concision, the corresponding formulas will not be presented.
2.2. Minimization of the voltage unbalance

The sensitivity function indicates the influence of each sys-
tem parameter on the corresponding voltage unbalance. It cannot
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e directly used to determine the parameter variation needed to
educe the voltage unbalance to a desired value because it is a
rst-degree estimate of a non-linear equation, K. Instead, analyt-

cal solutions are provided. Three situations are possible: variation
f one parameter separately (magnitudes and angles of each phase),
ariation of two magnitudes simultaneously and variation of three
agnitudes simultaneously.
For the first situation, Eq. (3) must be manipulated in order to

solate one of the variables. By squaring (10), bringing the term 9V1
2

o the left side of the equation, and substituting (8) and (9) in the
orresponding expression, Eq. (20) is obtained.

2{V2
A + V2

B + V2
C + 2VAVBcos(�AB − 120◦)

+ 2VBVCcos(�BC − 120◦) + 2VAVCcos(�CA − 120◦)}
= V2

A + V2
B + V2

C + 2VAVBcos(�AB + 120◦)

+ 2VBVCcos(�BC + 120◦) + 2VAVCcos(�CA + 120◦) (20)

To hold this equality, one of the parameters, VA, VB, VC, �A, �B or
C can be changed, providing a new value for K, here called Knew.
or instance, isolating VA in (20) results in a quadratic polynomial,
21). The terms AVA, BVA and CVA are defined in Eqs. (22)–(24).

VAV2
A + BVAVA + CVA = 0 (21)

VA = 1 − K2
new (22)

VA = 2VB[cos(�AB + 120◦) − K2
newcos(�AB − 120◦)]

+ 2VC[cos(�CA + 120◦) − K2
newcos(�CA − 120◦)] (23)

VA = 2VBVC[cos(�BC + 120◦) − K2
newcos(�BC − 120◦)]

+ (1 − K2
new)(V2

B + V2
C ) (24)

The above equations show that, given initial values for VB, VC,
A, �B and �C, a different K value can be chosen (Knew), and two
ew values of VA will satisfy this new voltage unbalance situation.
hese two solutions only have a physical meaning for real, positive
alues, such that B2

VA − 4AVACVA ≥ 0. In developing this equation
nd isolating Knew, limit values can be determined for the correction
f the voltage unbalance. Eqs. (25)–(32) present the corresponding
ormulas.

VAKK4
new + BVAKK2

new + CVAK = 0 (25)

VAK = ˛2
VAK + 4�VAK (26)

VAK = 2˛VAKˇVAK + 4(ıVAK − �VAK) (27)

VAK = ˇ2
VAK − 4ıVAK (28)

VAK = −2VBcos(�AB − 120◦) − 2VCcos(�CA − 120◦) (29)

VAK = 2VBcos(�AB + 120◦) + 2VCcos(�CA + 120◦) (30)

VAK = −2VBVCcos(�BC − 120◦) − V2
B − V2

C (31)

VAK = 2VBVCcos(�BC + 120◦) + V2
B + V2

C (32)

Consequently, ˛VAK, ˇVAK, �VAK and ıVAK are the parameters that
ndicate, by satisfying Eq. (25) and knew ≥ 0, the minimum knew

alue that can be reached by changing VA, given initial values for
B, VC, �A, �B and �C.
The same procedure can be repeated for the magnitudes of
hases B and C, resulting in similar equations. As for the phase
ngles, the principle is the same, but the resulting equations are
ifferent. The corresponding equations for �B are presented in Eqs.
33)–(46). Eq. (33) indicates the new value of �B (�Bnew ) that satisfies
s Research 79 (2009) 1441–1445 1443

the chosen Knew value, given initial values for VA, VB, VC, �A and �C.
Eqs. (34)–(36) define the parameters for (33). Eq. (37) determines
the minimum value of Knew that can be reached through �Bnew , and
Eqs. (38)–(46) define parameters for (37).

�Bnew = arc tg

(
B�B

A�B

)
± arc cos

⎛
⎝ −C�B√

A2
�B

+ B2
�B

⎞
⎠ (33)

A�B
= 2VAVB[cos(�A + 120◦) − K2

newcos(�A − 120◦)]

+ 2VBVC[cos(�C − 120◦) − K2
newcos(�C + 120◦)] (34)

B�B
= 2VAVB[sin(�A + 120◦) − K2

newsin(�A − 120◦)]

+ 2VBVC[sin(�C − 120◦) − K2
newsin(�C + 120◦)] (35)

C�B
= (1 − K2

new)(V2
A + V2

B + V2
C ) + 2VAVC[cos(�C − �A + 120◦)

− K2
new cos(�C − �A − 120◦)] (36)

A�BK
K4

new + B�BK
K2

new + Cnew = 0 (37)

A�BK
= ˛2

�BK
− �2

�BK
− ε2

�BK
(38)

B�BK
= 2˛�BK

ˇ�BK
− 2��BK

ı�BK
− 2ε�BK

��BK
(39)

C�BK
= ˇ2

�BK
− ı2

�BK
− �2

�BK
(40)

˛�BK
= −(V2

A + V2
B + V2

C ) − 2VAVCcos(�C − �A − 120◦) (41)

ˇ�BK
= V2

A + V2
B + V2

C + 2VAVCcos(�C − �A + 120◦) (42)

��BK
= −2VAVBcos(�A − 120◦) − 2VBVCcos(�C − 120◦) (43)

ı�BK
= 2VAVBcos(�A + 120◦) + 2VBVCcos(�C + 120◦) (44)

ε�BK
= −2VAVBsin(�A − 120◦) − 2VBVCsin(�C − 120◦) (45)

��BK
= 2VAVBsin(�A + 120◦) + 2VBVCsin(�C + 120◦) (46)

The solutions for variables VB, VC and �C will not be developed,
for the sake of concision, and �A is not considered, since it is used
by electricity meters as the reference angle, being always null.

Next, the method for correcting the voltage unbalance through
three magnitudes is developed. There are now three variables
and only one equation, (20), yielding infinite solutions. To solve
this problem, a different approach is needed. The goal now is
to find a solution that results in the smallest variation for the
three magnitudes. Considering the Euclidean distance, this mini-
mization problem is stated as: find min((VA − VA0

)2 + (VB − VB0 )2 +
(VC − VC0 )2), subject to Eq. (20), where VA0

, VB0 and VC0 are the ini-
tial values of the magnitudes of phases A, B and C.

Using Laplace’s method, a new variable (	) is introduced in order
to include (20), creating a new function to be minimized, Eq. (47).

min{(VA − VA0
)2 + (VB − VB0 )2 + (VC − VC0 )2

+ 	{(V2
A + V2

B + V2
C )(1 − K2

new)

+ 2VAVB[cos(�AB − 120◦) − K2
newcos(�AB + 120◦)]

+ 2VBVC[cos(�BC − 120◦) − K2
newcos(�BC + 120◦)]
+ 2VAVC[cos(�CA − 120◦) − K2
new cos(�CA + 120◦)]}} (47)

Calculating the derivatives of (47) in respect to VA, VB, VC and
	, and making them equal to zero, a system with four equations
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Table 1
Relative sensitivity of K and minimum values for correction through each parameter, for a system with one unbalanced magnitude.

VA VB VC �B �C
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T
R

R
M
C

elative sensitivity (dimensionless) −10.89 5.45
inimum K (%) 0 2.605

orresponding values for minimum K 220 V 211.164 V

nd four variables is created. The solutions are too cumbersome
o be developed by hand, requiring a software that calculates
perations with symbolic math, such as Maple®, MatLab® and
ciLab®.

The procedure for obtaining the correction of a voltage unbal-
nce through two-phase magnitudes is the same as above, but
ith one less variable. For instance, if the magnitude of phase
should remain constant, then the function to be minimized is

(VA − VA0
)2 + (VB − VB0 )2), subject to (20). The method for choos-

ng the constant magnitude phase was the one closest to the
ominal voltage value.

. Results

In order to verify the validity of the methods developed in the
revious section, different sets of unbalanced voltages were stud-

ed. Three situations were chosen: one unbalance magnitude; one
nbalance angle; three unbalanced magnitudes and two unbal-
nced angles. In all of these, the angle of phase A was taken as a
eference for the other two phasors, being always equal to zero,
nd the nominal magnitude considered was 220 V, with no loss of
enerality.

.1. One unbalanced magnitude

The first situation considered for validating the methods was a
ystem with all parameters balanced, except for the magnitude of
hase A. Eq. (48) presents the chosen values.

VA = 201∠0◦

VB = 220∠ − 120◦

VC = 220∠120◦
(48)

According to Eqs. (1)–(3), this system results in a voltage unbal-
nce of 2.96%. The relative sensitivities (presented in Section 2.1),
he minimum values for correction through one parameter and the
orresponding parameter values that result in these minimum K
alues (Section 2.2) are presented in Table 1.

Table 1 indicates positive and negative values for the relative
ensitivities. The negative sign is determined by the growth direc-
ion of the derivative of K, according to each parameter. For instance,
ncreasing VA leads to a positive percentage increase for this variable
�VA > 0), and according to the relative sensitivity value, to a neg-
tive percentage increase in K (�K < 0). In other words, an increase
n VA reduces K.

Ignoring the negative signs, it can be seen that, for this volt-

ge unbalance situation, K is much more sensitive to the angles
han to magnitudes of the phases, even though the only unbal-
nced parameter is VA. Among the phase magnitudes, K is almost
wice as sensitive to VA as to VB and VC. Despite the higher sensitiv-
ty to angles, the correction through these parameters is limited to

able 2
elative sensitivity of K and minimum values for correction through each parameter, for a

VA VB

elative sensitivity (dimensionless) −12.48 12.31
inimum K (%) 1.210 1.116

orresponding values for minimum K 232.920 V 206.678
5.45 −21.00 21.00
2.605 1.383 1.383

211.164 V −124,431◦ 124,431◦

1.383%, while K can be made null through VA, which is an expected
result.

A series of K values were chosen, in order to validate the
results in Table 1. The relative sensitivities were approximated
by (�K/K)/(�˛i/˛i), and the correction values were determined
by the methods presented in Section 2.2. The parameter values
that result in the minimum K values are VA = 220 V, VB = 211.164 V,
VC = 211.164 V, �B = −124.431◦ and �C = 124.431◦. Each of these
values should be considered separately, keeping all the others con-
stant, at their initial values. The sensitivity analysis and the methods
of correction through one variable were confirmed. As for the meth-
ods of correction through two and three magnitudes, correction
was possible for all K values, including for K = 0%. The magnitude
values for K = 0% were VA = 220 V, VB = 220 V, VC = 220 V, for the cor-
rection through two magnitudes, and VA = 213.667 V, VB = 213.667 V,
VC = 213.667 V, for the correction through three magnitudes. In the
first case, VB was kept constant, because it was closer to the nomi-
nal value, and the second case is the correction that generates the
smaller Euclidean distance through the three magnitudes.

3.2. One unbalanced angle

The second situation considered was a system with the angle
of phase C unbalanced (Eq. (49)). It resulted in a 2.328% voltage
unbalance. Table 2 presents the relative sensitivities, the minimum
values for correction through one parameter, and the corresponding
values for these parameters.

VA = 220∠0◦

VB = 220∠ − 120◦

VC = 220∠116◦
(49)

Table 2 indicates that the voltage unbalance is highly sensitive
to �C, but practically insensitive to VC . Furthermore, it shows that
it is impossible to reduce the voltage unbalance through VC, but
possible to eliminate the unbalance through �C, as expected. Once
again, K is more sensitive to angles than to magnitudes.

As in Section 3.1, the limits and sensitivity values in Table 2 were
validated for a series of K values, using the same procedures. As for
the methods of correction through two and three magnitudes, cor-
rection was again possible for all K values, including for K = 0%. This
was an unexpected result, which reveals that when the angles are
kept unbalanced, it is possible to find a set of magnitudes that make
the voltage unbalance null, according to Eq. (3). The magnitude
values for K = 0% were VA = 220 V, VB = 202.926 V, VC = 211.979 V,
for the correction through two magnitudes, and VA = 228.447 V,

VB = 210.718 V, VC = 220.119 V, for the correction through three mag-
nitudes. Clearly, these voltage phasors are unbalanced, even though
they yield K = 0%.

Further analysis of the latter results indicates that they represent
tri-phase systems with V2 = 0 V, but V0 /= 0 V. Additionally, the cor-

system with one unbalanced angle.

VC �B �C

0.17 −14.10 29.02
2.328 2.036 0

V 220 V −121.976◦ 120◦
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Table 3
Relative sensitivity of K and minimum values for correction through each parameter, for a system with three unbalanced magnitudes and two unbalanced angles.

VA VB VC �B �C

R −0.4
M 2.4
C 220 V

r
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[

[

[

[

elative sensitivity (dimensionless) −11.16
inimum K (%) 1.169

orresponding values for minimum K 215.332 V

esponding line voltages of these systems are perfectly balanced.
o, it can be concluded that the methods of correction through two
r three magnitudes are able to make V2 null, eliminating the volt-
ge unbalance (according to Eq. (3)), but they are not responsible
or the final value of V0.

.3. Three unbalanced magnitudes and two unbalanced angles

The last situation considered was a system with all param-
ters unbalanced (Eq. (50)), which results in K = 2.49%. Table 3
resents the relative sensitivities, the minimum values for correc-
ion through one parameter, and the corresponding values for these
arameters.

VA = 201∠0◦

VB = 220∠ − 122◦

VC = 231∠121◦
(50)

Table 3 indicates extremely low K sensitivity to VB, medium sen-
itivity to VA, VC and �C, and high sensitivity to �B. Actually, the
oltage unbalance remains unaltered by changing VB, and can be
ade almost null by changing only �B. As in Sections 3.1 and 3.2, K

emains more sensitive to voltage angles than magnitudes.
The limits and sensitivity values in Table 3 were validated,

ncluding for K = 0%. No parameter altered alone was able to elimi-
ate the voltage unbalance, but �B could lead K to 0.119%. As for the
ethods of correction through two and three magnitudes, correc-

ion was again possible for all K values, including for K = 0%, yielding
nbalanced systems with V2 = 0 V, but V0 /= 0 V.

. Conclusions

In this paper, mathematical models and algorithms have been
roposed and developed in order to analyze and correct voltage
nbalances, based on the symmetrical components method. Two
ethodologies were created: sensitivity analysis and analytical

olutions. The first was used to determine the influence of each sys-
em parameter on the voltage unbalance, and the second provided
xact solutions for the correction of the unbalance.

Both methods were applied to three different unbalanced sit-
ations, in order to be validated. The systems considered had the

ollowing unbalanced parameters: one magnitude, one angle, and
hree magnitudes and two angles (where phase A was always taken
s the angular reference). Two special aspects of the K index were
erified after the study of each unbalance situation. First, K pre-
ented higher sensitivity to voltage angles than to magnitudes.

[

[

8 11.64 −28.78 16.05
93 1.365 0.119 2.081

217.576 V −126.218◦ 123.267◦

Second, whenever there was an angle unbalance, it was possible to
find phasor sets that yielded K = 0%, keeping the same angle unbal-
ance. That is, there were unbalanced phasor sets that have a null
K index, but whose line voltages are balanced. This is an undesired
aspect of the symmetrical components method, since it is unable
to detect the voltage unbalance of certain special situations.

The sensitivity analysis held true for all cases, indicating the
influence of each parameter, but it did not indicate any limits for
correction, whereas the analytical solutions provided this kind of
information. The correction through two and three magnitudes
indicated unusual aspects of the K index, as mentioned before. The
combination of both methodologies constitutes a valuable tool for
the analysis of voltage unbalances.

Appendix A. List of symbols

K voltage unbalance factor (symmetrical components
method)

S�i˛j
absolute sensitivity function

S
�i
˛j

relative sensitivity function

V1 magnitude of the positive-sequence voltage component
V2 magnitude of the negative-sequence voltage component
VA, VB, VC voltage phasors of phases A, B and C
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