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Abstract. This paper presents an algorithm for identification of pedaling cycles of cyclists 
from signals acquired by surface electromyography (SEMG) during cycling tests. It is based 
on empirical measures and on the pure investigation of the SEMG energy signal envelopment 
in order to find each pedaling signal segment. Its logic consists of successive application of 
first-difference and cubic spline interpolation techniques over the SEMG energy signal. The 
algorithm does not require any kind of synchronization to delineate the pedaling. Thus, the 
instrumentation commonly used to register the start and the end of each pedaling cycle 
becomes unnecessary on experimental protocols. This contributes for the optimization of 
SEMG signal compression methods once no additional bytes are needed to recognize a 
pedaling cycle signal segment. As a consequence, data transmission mechanisms can be also 
improved and thus make easier the remote measurement procedures and the studies of 
performance of athletes in real conditions of training. This study segmented a 1,000,000 
samples pedaling signal with the proposed algorithm and with a trigger device which 
delineated each pedaling cycle. Results showed that there are no significant differences 
between the two segmentation methods, suggesting that the algorithm is an effective way to 
segment SEMG pedaling signals. 
 
Keywords: Cyclists training, Signal segmentation, Surface electromyography 



1 INTRODUCTION 

The surface electromyography (SEMG) is a technique widely used in muscular activity 
studies. Its investigation can provide valuable elements to support the training of athletes. One 
of its most common applications is related to the evaluation of performance of cyclists 
(Diefenthaeler & Vaz, 2008; Duc et al., 2005; Lepers et al. 2001; Tucker et al., 2007; Soa et 
al. 2005; Hug et al. 2003; Bini et al. 2008; Argentin et al., 2006). The analysis of SEMG helps 
to understand how the biomechanical and physiological characteristics of the pedaling 
technique can influence on the behavior of athletes in competitions. Prilutsky & Gregor 
(2000) predicted muscle force patterns by pushing and pulling the pedal comparing the results 
with electromyographic patterns. Billaut et al. (2005) studied the muscle coordination changes 
during intermittent cycling sprints observing the inter-muscle coordination in fatigue 
occurrence through electromyographic activity. Ricard et al. (2006) compared the effects of 
bicycle seat tube angles on power production and electromyography of the vastus lateralis, 
vastus medialis, semimembranous, and biceps femoris during a Wingate test. Savelberg et al. 
(2003) manipulated the trunk angle in ergometer cycling and studied the effect of body 
configuration on muscle recruitment and joint kinematics, with respect to timing and 
amplitude of the SEMG signal. Li & Caldwell (1998) examined the neuromuscular 
modifications of cyclists to changes in grade and posture by analysis of electromyographic 
magnitude. Bressel et al. (1998) studied the influence of reverse pedaling and forward 
pedaling on the muscle activity and oxygen consumption, trough the SEMG amplitudes 
quantification and VO2 analysis. 

In spite of the large use of SEMG in cycling researches, most of the experimental 
protocols are still restricted to the use of cycloergometers (or fixed bicycles) and traditional 
electromyographs in a laboratory environment. This is because there are a set of care that 
must be take into account when SEMG signal is studied. The most of them are related to the 
origin of the signal, its fidelity, and its level of stationarity (De Luca, 1997). Regarding 
dynamic contractions, the SEMG investigation indeed requires expert operators for electrode 
positioning and is affected by many factors other than the physiological phenomena under 
study (Farina et al., 2002). Moreover, extra complexity is added to protocols if remote 
measurements have to be performed. Thus, the investigation of SEMG signals of cyclists in 
real world training conditions requires the development of compact instruments as well as the 
improvement of techniques of telemetry and signal compression in order to transmit data 
efficiently. Some researchers have studied methods of SEMG signal compression using 
wavelet transform (Norris et al., 2001), artificial neural networks (Berger et al., 2006), and 
image compression techniques (Costa et al., 2008) which have reported good compression 
factors. Nevertheless, an efficient segmentation procedure is needed to help the compression 
methods work well at real and remote conditions. 

Based on all previous arguments and with focus in the segmentation problem, this paper 
proposes an algorithm to identify each pedaling cycle from an SEMG signal and to segment 
them into separated signal blocks. The logic consists of determining the envelope of the 
SEMG energy signal as well as finding their peaks. The SEMG signal is then segmented 
based only on the average distance between each peak (or each pedaling cycle). This feature 
optimizes the compression procedure once no additional characters of control are needed for 
transmission of SEMG signal. Moreover, the proposed technique simplifies the cycling test 
execution since no additional instrumentation (i.e. a trigger) is needed for delineating pedaling 
cycles. Therefore, the algorithm developed can be suggested as a good practice to be used in 
building experimental protocols for analyzing the performance of cyclists in real world 
trainings.  

 



2 METHODS 

One normal healthy adult male (33 years, 1.63 m, and 60 kg) with no history of 
orthopedic disease participated in this study. He voluntarily read and signed a written consent 
form before participating in the experiment that was approved by the University Institutional 
Review Board. 

A cycloergometer (Biotec 1800, Cefise, Brazil) was used for the cycling test. The start 
and end points of each pedaling cycle were detected by a trigger composed of a magnetic key 
(fixed on the cycloergometer) and a magnet (fixed on the crank). The magnetic key was 
adapted so as to ensure an angle of 30º clockwise from upright position of crank (Fig. 1a).  

SEMG signals were detected in single differential configuration during pedaling activity 
from the right thigh with a linear adhesive array consisting of eight silver-electrodes with 
5mm inter-electrode distance. Vastus lateralis was the muscle under study. The SEMG signals 
and the trigger pulses (sent to the auxiliary input) were amplified by a multichannel amplifier 
(EMG 16, LISiN—OT Bioelettronica Snc, Torino, Italy), bandpass filtered (-3 dB bandwidth 
= 10–500 Hz, 4th order Bessel filter), sampled at 2048 samples·s-1, and converted to digital 
data by a 12 bit A/D converter board. Before electrode placement, the muscle activity was 
assessed with a dry array of 16 electrodes (silver bars, 5mm long, 1mm diameter, 5mm inter-
electrode distance, OT Bioelettronica, Torino, Italy) during 10 seconds isometric contraction 
with the crank fixed at the angle of 30º where the activity peak of vastus lateralis occurs (So et 
al. 2005). The innervation zone location and the distal tendon regions were identified by 
visual inspection and the region with optimal signal propagation was marked over the skin 
(Fig. 1b) – (Masuda et al., 1985; De Luca, 1997). The orientation of the array was also 
selected on the basis of visual signal analysis, choosing the angle of inclination which led to 
most similar potentials traveling along the array. The part of the skin where the location of the 
array was identified was shaved and slightly abraded. A reference electrode was placed on the 
right patella (Fig. 1a). 

After equipment setup, the subject was asked to perform 5 minutes of cycling at 60 W for 
warm-up and familiarization with the equipment. For testing, he was submitted to an 
incremental protocol with the initial pedaling load of 150 W, cadence constant of 80 rpm, and 
load increment of 20 W•min-1. The test was ended when the subject could not maintain the 
proposed cadence.  

 

 

Figure 1 – a) Magnetic key of trigger device on the cycloergometer at 30º clockwise from 
upright position of crank; b) Optimal recording was marked over the skin. 



3 PEDALING DETECTION ALGORITHM 

The algorithm of pedaling cycle detection from a SEMG signal determines the 
envelopment of the SEMG energy signal and finds their peaks. This is achieved by the 
successive application of first-difference (Smith, 1998) and cubic spline interpolation 
techniques (De Boor, 1978). The abscissa (the “x” coordinate, in time or sample number) of 
each point where a peak of energy occurs is the main reference of the pedaling cycle. 

3.1 The core of the algorithm 

The proposed algorithm uses the first-difference technique in order to identify the 
inflexion points of the SEMG signal energy where the curvature is negative. These points are 
the basis for the envelopment construction. A rough approximation for the signal envelopment 
could be built by linking the inflexion points with straight segments (linear interpolation). 
However, a non-linear interpolation method is needed to get smoother signal envelopment. 
Therefore, the cubic spline data interpolation was chosen in order to better represent the 
SEMG energy signal behavior. Figure 2 exemplifies three iterations of the algorithm. The 
rough signal envelopment was shown only for illustration; it is not a required step. The 
envelopment found in a previous iteration is used as the input for the next iteration.  

 

 

Figure 2 – A segment of the SEMG energy signal (frame 1) is submitted to three 
iterations of the pedaling cycle detection algorithm; the frame 12 (third iteration) shows 

three evidenced peaks (asterisks) which could indicate three distinct pedaling. 

As the number of iterations increases, the envelopment covers a larger segment of the 
SEMG energy signal. Figure 3a shows that there are two pedaling cycles (surrounded by 
ellipses) involved by each of the envelopments of peaks 1 and 3. In order to avoid this effect, 
a stop condition must be defined so as to ensure that each negative curvature (or peak) has 
only one pedaling cycle. A first criterion to do this is to empirically determine the average 
length (in seconds or samples) between all pedaling cycles. Then, the iterations must continue 



until the distance between each found pair of successive peaks is less than the half value of 
this average. In addition, we need a second criterion for define what can be considered a valid 
peak. Empirical analysis have also shown that all negative curvatures whose amplitudes are 
higher than the half of the mean amplitude of SEMG energy signal can be well considered as 
valid peaks. Figure 3b illustrates the same segment of Fig. 3a, but now obeying the two 
criteria proposed. 

 

 

Figure 3 – a) At the seventh iteration, the envelopment of each peak does not correspond 
to a single pedaling; b) Valid peaks at inflexion points 2, 3, 5, 7, and 8 found at sixth 

iteration; straight line represents the half of the mean amplitude of SEMG energy signal. 

There are nine inflexion points in Fig. 3b where the curvature is negative but only the 
points 2, 3, 5, 7, and 8 are acceptable peaks covering individual pedaling cycles according to 
the second criterion. The algorithm stopped at sixth iteration, as a consequence of first 
criterion, revealing five pedaling cycles. This is consistent with what can be visually 
observed. 

3.2 Segmentation 

The segmentation of SEMG signal is based on the average distance between the abscissas 
of points where the peaks of the envelopment of energy were found. Since the average 
distance was calculated, each individual pedaling segment is determined by cutting a piece of 
the signal with the length of the average distance so as to have the abscissa of the respective 
peak in the center of the segment. Only complete pedaling cycles are segmented. 

 Finally, the segments found can be structured in a matrix with the number of lines equal 
to the number of pedaling cycles, and the number of columns equal to the length (in samples) 
of the average distance between the abscissas. This matrix can be seen as an image structure. 
Therefore, techniques of image compression could be applied over this bi-dimensional signal. 
Figure 4 shows an example of a SEMG signal structured as an image signal. 

4 RESULTS 

The SEMG channel with the highest root mean square value of amplitude was chosen to 
the analysis. The signal had a length of 1,000,000 samples (about 8 minutes and 8 seconds) 
and was submitted to the proposed algorithm. After six iterations, a number of 697 pedaling 
cycles was identified. The distance between the abscissas of each pair of successive peaks was 
determined and their average value was calculated. The same was made for the abscissas of 
each pair of successive trigger pulses recorded during the cycling test. The SEMG signal was 
then segmented using both the proposed algorithm as the trigger pulses results. Figure 4a 
shows the segmentation of the SEMG signal made with the proposed algorithm. 



 

Figure 4 – a) SEMG signal segments, with a length of 1432 samples, determined by the 
proposed algorithm; b) Gray scale image constructed with 697 SEMG segments. 

The gray scale image of Fig. 4b was constructed with the 697 pedaling cycle segments 
with length of 1433 samples. 

After segmentation, the energy of each segment was also calculated for the two methods 
(algorithm and trigger pulses). The two methods were then statistically compared regarding 
their abscissas (of peaks and trigger pulses), the average distance, and the energy of each 
segment. The Kolmogorov-Smirnov normality test was applied to all variables and in just one 
case the normality was verified. Therefore, Wilcoxon Signed-Rank non-parametric test (De 
Sá, 2007) was applied to compare both methods. Table 1 summarizes the results of the 
comparison. 

Table 1 – Comparison between the variables found using the proposed algorithm and 
the trigger pulses technique 

Methods 
Variable 

Algorithm  Trigger 
Abscissa (sample) · 10-4 49.73 ± 28.17 < 49.74 ± 28.17 

Average Distance (samples) 1433.11 ± 123.56 * = 1433.24 ± 91.50 
1Energy of Segments (mV)2 · 10-5 56.75 ± 15.49 < 56.76 ± 15.50 
2Energy of Segments (mV)2 · 10-5 55.59 ± 15.32 = 55.58 ± 15.31 
Note. Values are mean ± SD. 
* Significantly normal (p > 0.05). 
1 Values considering all the 697 pedaling cycles found. 
2 Values considering only the first 598 pedaling cycles found. 
The symbols ‘<’ and ‘=’ are Wilcoxon Signed-Rank non-parametric tests (α = 0.05). 

 



5 DISCUSSION 

The experimental protocol used is a traditional protocol for study of performance of 
cyclists. It was chosen in order to test the proposed algorithm in a standard investigation 
procedure of cycling tests. This enabled the evaluation of the algorithm developed in relation 
to a common way of pedaling cycle’s identification which uses pulses generated by a trigger 
device. 

The first analysis compares the abscissas found by both methods. The abscissas are the 
main reference of each pedaling cycle used for segmentation. Table 1 shows that the abscissas 
found with the algorithm are significantly less than the ones found with the trigger. This 
represents a displacement of 38 ± 61 (mean ± SD) samples on average, i.e. about 18.6 ± 29.79 
milliseconds.  

Despite of the abscissas displacement, the average distance is not significantly different. 
Therefore, the segment length calculated is the same for both methods and the size of the 
image matrix (as the one showed in Fig. 4b) will also be the same. 

After segmentation, the energy of each segment was determined for both methods. Here a 
curious behavior was noted. When all pedaling cycles (697) were considered, significant 
differences were identified by Wilcoxon test, resulting in values for the algorithm smaller than 
the ones for the trigger technique. However, after further research where the cycles were 
removed one by one, from last to first in order to study the production of energy throughout 
the test, there were no significant differences between the two methods until the pedaling 
cycle number 598. A hypothetical reason is that the subject could be starting a critical state of 
fatigue at this cycle. In this situation, all the muscle motor units could be actives (Merletti & 
Parker, 2004) and it is possible that the displacement of the abscissas significantly interfere on 
the energy calculus after the cycle 598. 

Regarding the use of the algorithm as a segmentation step in a SEMG signal compression 
procedure, we can visually observe in Fig. 4b that the image presents good correlations 
between all the pedaling cycles, what certainly contributes for obtaining good compression 
factors. 

6 CONCLUSIONS 

Results showed that there are no significant differences between the two segmentation 
methods, what suggests that the algorithm developed is effective to segment SEMG pedaling 
signals. The main advantage of the algorithm is that no additional instrumentation is required 
to identify pedaling cycles neither additional bytes to store the information of trigger pulses. 

The use of cubic spline results in points of peak whose positions are balanced by the 
energy produced during each pedaling. This may suggest that the abscissa of each point of 
peak is the moment where the muscle activation is maximum. However, the results of the 
algorithm are different from that fund by the trigger technique which is according to (So et al., 
2005) criterion of maximum muscle activation. Thus, further analyses involving a higher 
number of athletes are required in order to give accurate conclusions about this question. 

Future works could also apply the signal compression techniques using both 
segmentation methods and comparing the respective compression factors. 
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