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RESUMO

A demanda por motores aeronauticos cada vez mais eficientes faz com que os
projetistas de turbinas axiais procurem desenvolver pas que permitem fornecer tal
performance requerida. O projeto da pa, comega a partir da definicao dos perfis da pa
em diferentes se¢des, geralmente em trés posi¢des: na raiz, no meio e no topo da pa.
A forma 3D da turbina axial é obtida a partir do empilhamento dos perfis, da raiz até o
topo da pa. A performance aerodindmica da pa é afetada significativamente pela
geometria do perfil. Dessa maneira, a definigdo do aerofdlio possui papel critico
durante o projeto. Esse trabalho apresenta uma metodologia para o desenvolvimento
de aerofdlios para turbinas axiais, através do projeto 1D da turbina axial, junto com
um método para gerar aerofdlios usando curvas de Bézier. Primeiramente, sera
estudado a cascata de aerofdlios da turbina VKI LS-89, como caso teste, para
aprimoramento das técnicas em modelagem CFD. Posteriormente, simulagdes
computacionais serdo realizadas para verificagdo da qualidade dos aerofdlios
gerados, que sera avaliada por meio dos graficos de distribuicdo de pressao e niumero
de Mach ao longo das superficies do perfil aerodindmico, além dos campos do
escoamento. As simulacdes numéricas serao feitas pelo software ANSYS Fluent.

Palavras-chave: Turbina axial. CFD. Aerofélio. Turbinas a gas. Fluent. Curva de
Bézier. Turbomaquinas



ABSTRACT

The demand for increasingly efficient aircraft engines make turbine designers attempt
to develop blades that provide such required performance. The blade design starts
from the definition of blade profiles in different positions, usually in three places: hub,
mid and tip sections. The 3D shape of an axial turbine is obtained by stacking the
defined profiles from hub to tip. The aerodynamic performance of the blade is
significantly affected by the profile geometry. Thus, the determination of the airfoil
shape has critical role during the project. This work presents a methodology for
developing airfoils for axial turbines through an 1D turbine design, along with a method
for generating airfoils using Bezier curves. The VKI LS-89 transonic turbine cascade
will be first studied as a test case for improvement of CFD modelling techniques. After
that, CFD simulations will be performed in order to check the quality of the airfoils
generated by evaluating the pressure and Mach number distribution along the airfoil
surfaces, and the flow field contours. These numerical simulations will be carry out
using the software ANSYS Fluent.

Keywords: Axial turbine. CFD. Airfoil. Gas turbine. Fluent. Bézier curve.
Turbomachinery
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1. INTRODUCTION

1.1 STATE OF ART

Axial flow turbines are machines that have been used in many fields, as aviation,
oil and gas, power generation, Navy etc. The application of turbomachinery is a global
one, thus any increase in axial turbine efficiency and performance could lead to a major
economic impact worldwide [1]. General electric [2] reports that an improvement in
efficiency by 1% leads to an estimate saving in aviation industry of £6.14 billion over

15 years for a country.

to the Aviation industry

Figure 1. Estimate saving in aviation industry [2]
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The fundamental components of aeronautical gas turbine engines, as illustrated
in Fig. 2, are the compressor, the combustion chamber and the turbine. The
compressor increases the static pressure of the air. In the combustion chamber, the
fuel is mixed with this compressed air and burned, then the chemical energy stored by
the fuel is converted in internal energy and pressure. The turbine extracts the energy
from the working fluid leaving the combustion chamber. The power extracted by the
turbine is used to drive the compressor. Finally, the energy available in the exhaust

gases from the turbine is converted into a high speed propelling jet by the nozzle [3].

Freestream Compressor Combustor ~ Turbine  Nozzle

Figure 2. Typical single-spool turbojet [3]

For gas turbines engines, where axial turbines are employed, their net power
output is the difference between the turbine work and compressor work, the ratio is
about 2:1, so a small increase in efficiency of the compressor or turbine causes a larger
proportional change in the power output, thus an increase in thrust for aeronautical gas

turbine engines [1].

TA
T’4 —
Turbine work
T -
Py
TlSv Tf9 - P'9
T Tn |-
To |- Py Py
To 9 Available
0 0 energy for
thrust

)

N

Figure 3. T-s diagram for a turbojet engine [3]
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Over the years huge efforts have been expended in trying to improve the
efficiency of axial turbines, and the total-to-total efficiency is now over 90 percent. This
makes new improvements ever more difficult to achieve, however, it is still possible to
obtain more efficient machines by improving the knowledge of the thermodynamics

and fluid mechanics of the flow through the turbine [1].

The research on aircraft engines started in the 1940s and 1950s, it led to the
development of several methods of performance of axial turbines, e.g., Ainley and
Mathieson [6], which is still in use today. Overs the years, new methods were
developed by make some improvements on prediction of losses through the turbine,
these different loss mechanisms are categorized as, profile loss, secondary or endwall
loss and tip leakage. These improvements were possible due to the advent of new

instrumentation, it led to a better understanding of the flow [1].

The advent of the high speed digital computer combined with the development
of accurate numerical algorithms gave to engineers a new approach to study the flow,
this new approach is called, computational fluid dynamics (CFD). It is basically a
computer program which we can carry out “numerical experiments” to investigate the

flow behavior and its properties [4].

CFD has been used as design tool by engineers to improve the turbine
efficiency, decreasing the flow losses by blade geometry optimization. During the
design the turbine blade designer make several adjusts on blade geometry in order to
obtain the suitable geometry that combines good aerodynamic performance with
structure requirements. This process of refinement of blade to match the better
geometry can be time consuming and expensive. Therefore, optimization techniques
such as evolutionary algorithms or inverse design methods are option to enhance the

design process [5].

1.2 OBJECTIVES

The main goal of this work is to develop a turbine airfoil design procedure based
on existing methods. Thus, the blade profiles generated will be analyzed using 2D CFD
simulations. A method to perform an axial turbine mean line design will be showed in

order to provide the essential parameters to design the blade profiles. Also, one of the
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aims of the work is to learn about CFD techniques, such as mathematical models used

on CFD simulations, mesh generation, turbulence models and boundary layer.

1.3 WORK ORGANIZATION

In the chapter 2, the basic principles of thermodynamic and fluid mechanics
needed to analyze axial flow turbines will be demonstrated. In the chapter 3 discusses,
the velocity triangles of a turbine stage, the design parameters, the thermodynamics
of an axial turbine stage, 2D turbine losses, and efficiencies. In chapter 4, one
dimensional turbine design procedure will be showed, in order to calculate the flow
properties at each station of the turbine stage, the blade angles, and the blade row
geometry. In the chapter 5, a turbine airfoil design procedure based on existing

methods will be presented.
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2 BASIC PRINCIPLES

2.1 THE FUNDAMENTAL LAWS AND EQUATIONS

According to Dixon and Hall [7]. the basic physical laws of thermodynamics and

fluid dynamics and equations necessary to the study of axial flow turbines are:
I. The continuity equation
ii. The momentum equation

iii. The angular momentum equation

iv. The first law of thermodynamics
V. The second law of thermodynamics
Vi. The ideal gas Equation

Vii. Compressible flow relations
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2.2 THE CONTINUITY EQUATION

From physical principle of mass conservation, “Mass can be neither created nor

destroyed” [8]. The continuity equation is expressed by

%J—ffpdv+ﬂ-pl7-dj=0 1)
cv cs

The first integral term represents the time rate of change of the mass inside the
control volumes, and the second integral term is the net mass flow into the control

volume through the entire control surface

Most of axial flow turbine analyses are limited to steady and one-dimensional
flows. Considering that we have an inlet and outlet surface, and assuming that there is

no change within the control volume, then
M = PinVinAnin = PoutVoutAnout (2)
Where p is the fluid density, V is the velocity, 4,, is the normal area.
2.3 THE MOMENTUM EQUATION

The momentum equation is based on Newton’s second law of motion. It
expresses the sum of external forces acting on a fluid element to the rate of change of
momentum in the direction of the resultant force. This equation is important because
the force exerted upon a turbine blade can be obtained by found by the momentum

equation [10]. The linear momentum equation is:
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[| #aa+ [[[ Boav =< || Vioavs + [[ o - ady -
CcS cv cv CcS

Here F is the surface force (tangential and normal) per unit of area acting on the

control surface, B is the body force per unity mass, such as electromagnetic and
gravity.

Figure 4. Control volume of a turbine cascade [10]

Considering a control volume of Fig. 4, for a steady state flow and assuming
that inlet and outlet surfaces are far upstream and downstream, respectively, from the
blade, where flow is uniform. The body forces acting on control volume is very small
relative to the surface force, then B =~ 0. Using the momentum equation, Eq. (3),

applied to the control volume ABCD, the force in the tangential direction is given by:
E

y = Ve, — Ves3) (4)

Where Vy, and V5 are the tangential velocities.
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2.4 THE ANGULAR MOMENTUM EQUATION

The angular momentum relates the rate change of angular momentum of the
system with the sum of moments of all external forces acting on the system [11]. It is
based on one of the most important principles in mechanics, Newton’s second law of

motion. The angular momentum equation is given by

ZM0=%l:!;f(?xl_/))pdv+!J(?x?)p?-dﬁ (5)

Where M, is the moment about some point and r is the vector position.

ves

Flow direction

Figure 5. Control volume of a turbomachinery [7]

For a control volume as Fig. 5, where the fluid enters steadily at an uniform
tangential velocity Vy, and radius r, and leaves with uniform velocity V,; and radius r3,

using Eq. (5), the torque about axis A is given by:

T4 = m(r, Ve, — 13Vp3) (6)
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By Eq. (6), we can express the power generated by the turbine based on the

tangential velocities
W = 1,0 = m(U,Vy, — UsVy3) (7)
Where () is the angular velocity and the blade speed U = Qr
2.5 THE FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics states that energy can be neither created nor
destroyed during a process, it can only change forms [9]. For an open system, the
energy can be transfer by work W, heat Q, and by a flowing fluid. The energy of the

system E is composed by: internal, kinetic, potential energy.

Considering a fluid which passes through a control volume at a steady rate mass

flow m, there is an inlet and outlet surface. Then, the first law of thermodynamics

becomes
. . : . _ 1,
(Qin - Qout) + (Win - Wout) + my (hin + EVm + gZin)

) 1 2 dE
— Moue(Rout +§Vout + 9Zout) = E

Where W is the rate of work transfer, Q is the rate of heat transfer, U is the

internal energy, g is the gravity and z is the height.

For convenience is useful to combine the enthalpy with the kinetic energy, the

result is called the total enthalpy:

h0=h+ _V2 (9)
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The energy is transferred from the fluid to the turbine blades. Assuming that
there is no heat transfer from or to the control volume surrounding, the variation of
potential energy is negligible. As the turbine usually operates at steady state
conditions, using Eq. (9) into Eq. (8), we have that the power generated by the turbine

is
W = m(hin — hout) (10)

Assuming that the working fluid is a thermally and calorically gas, which means

that the specific heats (C, and C,) are function of temperature only and they are
constant. Thus, h = C,T ,u = C,T and the ratio of the specific heats is y = z—” In this

way, we can express the enthalpy in terms of temperature. Thus, Eq. (10) becomes
W = me (Tin — Tout) (11)
Combining Eq. (7) with Eq. (10), results the Euler work equation

Ah, = A(UVp) (12)

This equation is valid for steady, adiabatic, viscous and inviscid flows and It
states that greater the total enthalpy or tangential velocity change of the rotor, higher
the power delivery by the turbine. Note that for stationary blades, the blade speed is

zero, thus there is no work transfer from the fluid.
2.6 THE SECOND LAW OF THERMODYNAMICS

According to Cengel [9], the second law of thermodynamics asserts that
processes occur in a certain direction and energy has quality. The process take place

only if it satisfies the first and second law of thermodynamics. An important corollary of
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the second law of thermodynamics, known as the inequality of Clausius. It introduces
a new thermodynamic property, called entropy S. Considering state 1 as the start and

state 2 as the end of the process, then

250 (13)
52_ Slz J- T‘l‘Sgen
1

Where S,.,, is the entropy generated during a process and it always positive
quantity or zero. If the process is adiabatic, 6Q = 0, then S, > S, if the process is
reversible then, S,.,, = 0. Thus, for a flow that is both adiabatic and reversible, the
entropy will remain unchanged, this process as know as isentropic. Usually, axial
turbine operates close to an isentropic process, therefore preliminary calculations are
considered as adiabatic and reversible process, after that it is correct by some loss

prediction method.

The first law of the thermodynamics can be expressed using the entropy
definition and considering that the flow work (fluid pushed into or out of the control
volume) is given by éw = Pv. Assuming that the system is stationary and there is no
potential energy. Using the entropy, internal energy and volume as specific properties

then

Tds = du + pdv (14)
or

Tds = dh + vdp (15)

Equations (14) and (15) are called Tds equations and they are very useful,

because the equations are written only in terms of properties of the system.

Based on definition of specific heats, we can express Eq. (14) and (15) in the

following forms
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T.
sz—slszlnT—j—len% (16)

T. v
52—51=C,]1n,1,—2+7€lnv—2 (17)
1 1

Where R is the gas constant.

2.7 THE IDEAL GAS EQUATION

The most important thermodynamic properties of the fluid are the pressure p,
the temperature T, the density p, the enthalpy h, the entropy s and the specific heats
C, and C,. We need to understand how these thermodynamic properties change during
a flow process. Thus, there are equations that provides the relationship among those.

By Turns [2], the ideal gas equation relates the pressure p, the temperature T
and the density p or the volume V of an ideal gas, which are all gases at low pressures

and at high temperatures, it is expressed as
p = pRT (18)
2.8 COMPRESSIBLE FLOW EQUATIONS

The Mach number is defined as the velocity divided by the local speed of sound

a. For a perfect gas, the Mach number is written as

4 (19)
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Axial turbines operate in a range of Mach number that exceeds 0.3. According
to Anderson [4] at this point the flow becomes compressible, therefore the fluid density

can no longer be considered as constant.

Assuming a steady state flow, for an ideal gas undergoing isentropic process,
no work (W = 0), the variation of potential energy is negligible (APE ~ 0) and

considering that the flow is brought to rest, then Eq. (8) can be expressed as

—1 (20)

This equation represents the total temperature T,, which is the static

temperature measured when the flow is brought isentropically to rest.

Assuming an isentropic process (As = 0) and manipulating Eq. (16) and Eq.

(17), we obtain equations that relates the temperature, density and pressure

1 y-1 (21)
=G -G

Substituting Eq. (20) into Eq. (21), we can express the total density p, and the

total pressure p, as function of Mach number and the ratio of specific heats

2 (22)

v (23)
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For Dixon and Hall [7], one of the most important compressible flow equation for
turbomachinery is the nondimensional mass flow rate, sometimes called as capacity
equation. It is obtained by combining Egs. (21), (22) and (23) with continuity, Eq. (2):

(24)

From capacity equation, we can relate the flow properties, such as total
temperature, total pressure, Mach number, and the thermodynamic properties of the

gas with the nondimensional mass flow rate.

The compressible flow equations showed previously can be applied in the
relative reference frame within the rotor blade rows. It this situation, the relative Mach

number and stagnation properties are used:

Torel Porel Porel m\/ CpTo,rel — F(M...) (25)
T ' p ’ p ' Anpo,rel ret




3 AXIAL FLOW TURBINES

3.1 TURBINE GEOMETRY

25

The turbine terminology used in this work is based on the schematic turbine

configurations shown in Fig. 6 and Fig. 7 and summarized in Table. 1.

Leading edge

( Trailing edge

Opening A
or throat ’
Spacing
or pitch
Blade inlet angle

Axis

Flow inle
angle/L &B/){

Flow
Incidence angle

+=sl—— Axial chord——|

Deviation angle Blade exit

angle

Figure 6. Turbine cascade geometry [15]
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Figure 7. Blade geometry [16]
Table 1. Turbine geometry parameters
Name Definition

Leading edge

It is the foremost edge of the turbine airfoil.

Trailing edge

It is the rearmost edge of the turbine airfoil.

Camber line

It is curve which the profile thickness

distribution is symmetric.

Stagger angle, ®

The angle between the chord line and the

axial direction.

Spacing or pitch, g

The distance between corresponding points

on adjacent blades.

Chord, ¢

The linear distance between the leading edge

and the trailing edge.

Axial chord, c,

It is axial length of the blade.

Incidence angle, i

The difference between the inlet flow angle a;

and the blade metal inlet angle a,'.

i= al_all

26
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The difference between the outlet flow angle

Deviation angle, & a, and the blade metal outlet angle «,’.

_ ’
5—6!2—0(2

Pitch — chord ratio, g/c | The ratio of the pitch g to the chord c.

Aspect ratio, h/c The ratio of the blade height h to the chord c.

Trailing edge blockage, | The ratio of throat o to the trailing edge

0/tte thickness t;,.

3.2 VELOCITY DIAGRAMS OF THE AXIAL TURBINE STAGE

The axial turbine stage comprises a row of stationary blades often called as
stator or nozzle and a row of moving blades, known as rotor. The fluid enter the stator
with absolute velocity V; at angle a,, the pressure drop through the stator from pressure
p, to pressure p, causes an acceleration from absolute velocity V; to the absolute outlet
velocity V, at angle a,. The rotor inlet relative velocity w, is calculated by subtracting,
vectorially, the blade speed U from the absolute velocity V, and define the relative inlet
flow angle B,. A further pressure drop from pressure p, to pressure p; through the rotor
accelerates the flow from the inlet relative velocity w, to the outlet relative velocity w,
and the flow leaves the rotor at a relative angle B5;. The corresponding absolute flow
velocity V; at angle a5 is obtained by subtracting, vectorially, the outlet relative velocity
ws to the blade speed U [7].

The velocity triangles provide a better understanding of the relationship among
absolute and relative flow velocities, and angles with the blade speed. The absolute
velocities are aligned with stator inlet and outlet, and the relative velocities are aligned
with the rotor inlet and outlet. All angles are measured from the axial (x) direction and
the sign convection is such that the tangential components of the velocities (V5 and wy)
are positive if they point in the direction of the rotational speed and negative if they

point into the opposite direction.
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Nozzle row

Rotor row

Figure 8. Turbine stage velocity triangles [7]

Based on Fig. 8, we can write the relations for absolute and relative flow angles

for both stator and rotor:

V2 = Vycosa, (26)
Vo, = V,sina, (27)
V
tana, = _z (28)
VXZ

/ (29)
V, = szz + Vezz



Wy = W, COS [,

Wgy, = W, Sin 5,

w
tanf, = 62

x2

—_ 2 2
Wy = [ Wyx2” + Wgy

29

(30)

(31)

(32)

(33)

The relative velocity w is the vector subtraction of blade speed U from the

absolute velocity V. From sign convection, the tangential component of velocities is

positive, then

Wy = Vg —U

As the axial velocity is the same for both reference frames (V,,

relationship between the absolute and relative flow angles is given by:

tanf, = tana, — —

For the rotor, we have

V.3 = Vzcosas

Vgs = V3sinag

(34)

= w,,), the

(39)

(36)

(37)
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V,
tan az; = % (38)
x3

/ (39)
Vs = szz + V632

Wy3 = W5 COS B3 (40)
Wp3 = W3 sin 53 (41)
tan f; = Wes (42)

x3

W3 = {/Wy3? + w32 (43)

From sign convection, for the rotor, the tangential component of velocities is

negative, then

Wg3 = V93 +U (44)
Being axial velocity the same for both reference frames (V,; = w,3), thus

U
tan f; = tana; + — (49)
Vx3

3.3 TURBINE DESIGN PARAMETERS

Three fundamentals nondimensional parameters that are very useful to design

axial turbines: Flow Coefficient ¢, Stage Loading Coefficient ¢y and Pressure Reaction
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Degree R. These parameters have influence on the shape of the velocity triangles,

which is related to the efficiency and number of stages [7].

The flow coefficient ¢ is the ratio of the axial flow velocity V to the blade speed

(46)

<
I
SsS

High values of ¢ mean small relative flow angles and velocities close to the axial
direction. Low value of ¢ implie wide relative flow angles with velocities close to the

tangential direction.

The Stage Loading can be derived from Euler work equation (12), and defined
as the ratio between the change of the intensity of the tangential component of IV and
the blade speed U.

AV (47)

High stage loading implies large flow turning (A8 = B, — B5). From Euler work
equation (12) we can see that high stage loadings lead to high specific work, then fewer
stages; however high stage loadings have influence on blading efficiency (increase in

losses).

The Pressure Reaction Degree R is the most important turbine parameter
because has influences on the efficiency and number of stages. Usually, a preliminary

design calculation starts from the choice of the pressure reaction degree, defined as:

R = P2 — D3 (48)
P1— D3
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In fact, the degree of reaction is a free design parameter and the choice of its
values depends on project requirements as high efficiency and small size [14].
Historically, the turbine designers opted either for zero degree of reaction or for the
50% reaction turbines. The effect of pressure reaction degree on the turbine design is
illustrated in Fig. 9, where the comparison among different degrees of reaction is made
assuming that the velocity triangles at the exit of the rotor are the same, the only

changes being in the stator exit conditions.

R=0 V2 W3 ))
vs f
w2 I’
—
u
R=0.2 V2 w3
V3

w2

5 v — <

R=05 V2 w3 / /
w2/ \v3
- ————
U U \ \

U U

B

Figure 9. Effect of Pressure Reaction Degree on velocity triangles [14]

From Fig. 9, we can see that increasing the pressure degree of reaction R, the
enthalpy drop Ah, decreases; this is related to the decrease of the tangential
component of the stator exit velocity Vj,, explained by the Euler work equation (12).

Being Vy5 constant, thus we have a reduction of work done by the turbine Eq. (7).

At zero pressure degree of reaction, the entire pressure drop happens in the
stator, thus V, and Vy, have the maximum values, as well the absolute stator outlet
flow angle a,. In the rotor, the relative flow angles (5, and 5 ) and velocities (w, and

wy ) are equal. The flow turning is maximum, then from Eq. (7), the work extracted by
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the turbine is maximum compared with other pressure degree of reaction values. Often,

this type of turbine is called impulse turbine.

At R = 0.5, the velocity triangles are equal, then: V, =w, ,V; =w,, a, = ;3 and
B, = a3, these lead to a low flow turning and being the blading efficiency related to the
turning, typically turbines designed with R = 0.5 have the highest efficiency but are
delivering less work with respect, for example, to the case R = 0. For this reason, they

are realized including more stages.

3.4 THERMODYNAMICS OF THE AXIAL TURBINE STAGE

The working process of the axial turbine is illustrated in the h-s diagram of Fig.
10. The thermodynamic process in the turbine stage depends on the pressure reaction
degree; in order to explain it, a turbine with (R = 0.5) has been chosen. The process
through the stator or nozzle occurs along the curve 1-2, where the static pressure
decreases from p, to p,. The change in total pressure (py, — poy) is due to increase in

entropy connected to viscous losses [6].

h[k//kg]

S

hoy = ho 0

hy -4

hy b v

hy fommmes
h,

03

RS SA

]lfj} S
(T S s TR ;
hos i
By b-----
hy,,

S, S, S, s[kJ/kg-K]

Figure 10. Expansion process in a turbine stage [17]
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As there is no work extraction in the stator, the total enthalpy across the stator

remains constant. From Eq. (10)

ho1 = ho» (49)

The working process in the rotor is represented by curve 2-3. In the rotor row,
there is another pressure drop. The total enthalpy in the absolute frame is changing
due to the energy transfer from the working fluid to the blades. In the rotor relative
frame, we can’t see the work extraction and thus we can consider constant the relative

total enthalpy; so, from Eq. (10)

hOZ,rel = h03,rel (50)

These two equations will be useful when the one-dimensional turbine design will

be discussed.

3.5 EFFICIENCY

The turbine overall efficiency can be defined as the available energy in a flowing
fluid converted into useful work delivered at the output shaft [7]. The isentropic

efficiency n, is a measure of the quality of this energy conversion. It is expressed by

actual work AW (51)
ideal work ~— AW,,4y

Ne =

The ideal work depends on how the ideal process is defined. The maximum
work will always be an isentropic process, but we need to designate the correct exit
state of the ideal process relative to the actual process. It depends on whether the exit

kinetic energy is usefully employed or wasted.
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If the exhausting kinetic energy is usefully employed (as in the case of the last
stage of aircraft gas turbines, where it contributes to the jet thrust or in the case of a
multistage turbine, where kinetic energy exhausting from stage is used in the following
stage), the ideal process is to the same total pressure as the actual expansion, then

from Eq. (10), we can define the total-to-total efficiency 7,

AW hoy — hos (52)

n = =
t AVl/max h01 - hOSs

If the exhausting kinetic energy cannot be usefully employed, (like when it is
wasted directly to the surrounding), the ideal expansion is to the same static pressure

as the actual expansion, then we can define the total-to-static efficiency 7.,

AW hOl - h03 (53)

7’] = =
s AVVmax h'01 - h3s

3.6 TURBINE LOSSES

According to Dixon and Hall [7] and Denton [1], the losses in a turbine can be
divided in two types: 2D or 3D. 2D loss sources are due to blade boundary layer,
trailing edge mixing and shock system. 3D sources are connected to tip leakage flows,
endwall or secondary flows and coolant flows. In this work, only a 2D turbine will be

investigated, then 3D losses are not considered.

The loss in the blade boundary layer is the work expended by the particles
against the viscous forces; it depends on the development of the boundary layer, which
is related to the blade surface pressure distribution, and in particular, to the transition
from laminar to turbulent flow. Boundary layer loss typically is responsible for over 50%

of the 2D loss in a subsonic turbine.
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From Denton [1], the entropy loss coefficient for the blade boundary layers is
given by:

1

3
$p =2 Z S cf)l: a, J- Cais (1%) d (Lx_b> (54)

Where, C,; is the dissipation coefficient, 1, is the blade surface velocity and

L, is the blade surface length.

3
From Eq. (54), the term (ﬁ) shows that the suction side is dominant in loss

V2
production, as the suction side has regions of high surface velocities.
Another parameter that has a big role, is the dissipation coefficient C,;;;. From
Fig. 11, where either a laminar or a turbulent flow could exist (300 < Rey < 1000), the
laminar dissipation coefficient C,;; is lower than the turbulent dissipation coefficient

Cdis .

0.010 +
Cp
0.005 —
Cp = 0.0056 Reg—1/6
0.000 T T T T T ~ T T T
10 20 50 100 200 500 1000 2000 5000

Reg

Figure 11. C;; vs. Reynolds number based on momentum thickness Reg [1]

Then, in order to minimize the loss, the boundary layer should be kept laminar

for as long as possible. It depends on the Reynolds number, turbulence level, and the
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blade surface velocity distribution. Therefore, the prediction of the boundary layer

transition is very important in the turbine design.

One of the main sources of loss for turbines is the trailing edge mixing loss. The
trailing edge mixing loss accounts for about 35% of the total 2D loss in subsonic
turbines, and about 50% of the total 2D loss in supersonic turbines. The trailing edge
mixing loss is related to the mixing of the suction surface and pressure surface
boundary layers, which have different flow conditions, with the region of flow

downstream the trailing edge

a).
0.06 |-
P
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Figure 12. The variation of The trailing edge mixing loss with Mach number and

trailing edge thickness [18]

Xu and Denton [18] states that the trailing edge loss increases roughly linearly
with the trailing edge blockage (Table 1). Fig. 12 shows the results of a family of
turbines with different trailing edge thicknesses. As we can see that when Mach
number is higher than one, there is a large increase in the trailing edge loss; this
happens because of the trailing edge shock system, mixing, and complex trailing edge
flow pattern. Therefore, thick trailing edges are the best alternative to decrease the

loss.
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3.7 ZWEIFEL CRITERION

There is an optimum pitch to chord ratio that provides a minimum overall loss.
The pitch to chord ratio has great influence on blade velocity distribution. Assuming
that the blade chord is constant, if we increase the space between the blades, the
friction losses are small, but we have a poor fluid guidance, which leads to high losses
due to flow separation. If the pitch is low, the blades give the maximum amount of
guidance to the fluid; however, the friction losses will be large. Zweifel [19] found that
the ratio of an actual to an ideal tangential blade loading has an approximately constant
value for minimum losses for blades having a high outlet angles. Based on Zweifel

coefficient Z, the optimum pitch to chord ratio can be obtained.

The actual tangential blade load for the stator and rotor are given by Eq. (4):

_Fy,s = mVgz — V1) (99)

Fyr = m(wgy — Wy3) (56)

The condition of ideal load is when the inlet total pressure acts over the whole
pressure surface and the outlet static pressure acts over the whole suction surface.
Assuming that the blade height is constant. Then, the ideal tangential blade load for

the stator and rotor is the difference of pressure between sides:

_Fy_ideal,s = (po1 — p2)hc (57)

Fy ideatr = (Pozrer — P3)hC (58)

Being the Zweifel coefficient is the ratio of actual to an ideal tangential blade

load
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_ M(Vo2 — Vo1) (99)
* (Po1 — P2)hc
_ m(wgp — Wp3) (60)

7. =
. (Poz,ret — P3)hC

Substituting Eq. (2) and into Eq. (59) and Eq. (60), we have

(g) __ o —P)Z (61)
c’s  P2Vx2(Voz — Vo1)

(g) _ (pOZ,rel_PS)Z (62)
/R P2Vxa(Woz — Wo3)

Based on experiments on low Mach number turbine cascades, Zweifel [19]
determined that the value of Z was approximately 0.8. According to Dixon and Hall [7],
the Zweifel coefficient accurately predicts optimum pitch to chord ratio for outlet angles
of 60° to 70°. The Zweifel coefficient may be greater than 1 in some cases, as low

pressure turbines.
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4 ONE DIMENSIONAL TURBINE DESIGN PROCEDURE

4.1 METHODOLOGY

The complete design of the turbine blade can be divided in 6 main activities as

shown in Fig. 13 [20]. This thesis focus on the three first processes:
1) 1D turbine design
2) 2D Blade profile design

3) 2D CFD analysis

Requirements \

1D Turbine

Design \

2D Blade profile

t 2D CFD
Analysis

N

Stacking
(Turbine Blade)

N

3D CFD
Analysis

N

Rig/Engine
Testing

Figure 13. Flowchart of the Turbine blade design
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The 1D turbine design is a critical part of the process, being the 80% of the final
product defined in the 20% of the design time [20]. The primary optimization of the
turbine geometry in terms of flow angles has been made by writing a first MATLAB
code, the Meanline Analysis Program, described by the flowchart shown in Fig. 14,
and presented in details in the following paragraphs. This program provides inlet and
outlet flow angles, pitch, chord, that are the parameters required to design the 2D blade
profiles. The stagger angle is obtained by using statiscal data [21], as will be shown in

the following paragraphs.

Initial conditions:
Tor, o1, M, W,y,Cp, U
1

'

Assume P3 gyess

Calculate the total and
static conditions, and the
absolute and relative
velocities at each station
of the turbine stage

!

Compute: a3, 2,83

Check if Wyyess = W |

WRONG

RIGHT

Compute: pitch, chord,
stage efficiency, velocity
triangles and T-s
diagram

Figure 14. Flowchart of the Meanline Analysis Program

Finally, these parameters have been used to design the blade profile, following

the Bézier curve method, implemented by writing another MATLAB code.

4.2 DESIGN MODEL

The one dimensional turbine design procedure used in this work has been

developed by Sieverding [10]. The design starts with determination of pressure degree
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of reaction. After that, the calculation of flow properties at the stator inlet and outlet
(that are also the rotor inlet conditions), and rotor outlet is performed. The annulus
areas are calculated, followed by the blade heights at each station. The blade row and
channel geometries are thus determined. The flow properties are calculated at the mid

span of the blade (meanline design).

The design procedure is an iterative method: being the static pressure at the
exit of the turbine unknown, a first tentative value of the pressure is necessary; besides
the blading efficiency depends on the inlet and outlet flow angles, Mach number,
Reynolds number, pitch to chord ratio and aspect ratio and we don’t know these values,
the first calculations are performed assuming values of blading efficiencies based on
statistical data [10]. In case of blading efficiencies, calculated by using loss models,

different from the estimated values, the design calculation is repeated.

4.3 TURBINE DESIGN PROCEDURE

The initial data required to start the calculation are the total inlet temperature
Ty, the total inlet pressure p,,, the mass flow rate m, the power delivered by the turbine
W, the blade speed U, the specific heat ratio y, and the specific heat at constant
pressure c¢,. The process is assumed to be adiabatic and will be assumed that the
specific heat ratio y and the specific heat at constant pressure C, are constant through
the turbine stage. The following equations have been implemented in a MATLAB code

(Meanline Analysis Program) written by the author.

From the Pressure Degree of Reaction R chosen, we can calculate the stator
outlet static pressure p, by assuming a value of the rotor outlet static pressure p; and
considering p; = py, (being the inlet Mach number low M; ~ 0.15 — 0.3). From Eq. (48),

we have

P2 = R(po1 —p1) + 3 (63)
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Being the total enthalpy constant across the stator, Eq. (49), its inlet total
temperature T,, is equal to the stator outlet total temperature T,,; then from the
isentropic relation between the temperature and pressure, Eq. (21), we can determine

the isentropic static exit temperature T,

r-1 (64)

From Eq. (9), we can find the stator isentropic absolute outlet velocity V, ¢

65
Vas = \/ch(T01 - Tz,s) (65)

Assuming a value of n; = 0.92 — 0.93 for the stator blading efficiency ;s [10],
we can calculate the static temperature T,, from the definition of total-to-static

efficiency, Eq. (563)
T, = Toy — Uts,S(Tm - Tz,s) (66)

The stator blading efficiency n, can also be expressed as the ratio of the stator
absolute outlet velocity V, to the the isentropic stator outlet velocity V, i, then we can

write:

V= v Nts,sVas (67)

The stator outlet density is calculated from the ideal gas equation, Eq. (18):

— P2
1% R, (68)
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The stator outlet Mach number is determined from Eq. (19):

M, = = (69)

From isentropic relation, Eq. (21), the stator outlet total pressure p,, is

calculated

N
Ty, (70)

Being the stator exit velocity V, known, the stator absolute outlet axial velocity
V., or the stator absolute outlet angle a, can be free choices of the designer. According
to Sieverding [10], 90% of the high pressure turbines have the stator absolute outlet
angle ranging from 70° to 75°. Moreover, most of low pressure turbines have the stator
absolute outlet angle ranging 60° to 70°. Therefore, it is easy to choice the stator
absolute outlet flow angle a,, and to obtain the components of the absolute velocity
from Eq. (26) and (27),

V2 = Vycosa, (71)

Vo, = Vysina, (72)

From Eq. (34), we can calculate the stator relative outlet tangential velocity wy,

Wy = Vg —U (73)

Being the axial velocity constant on both reference frames (V,, = w,,), from Eq.

(32), the stator outlet relative angle g, is determined as
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Wo2 (74)

x2

tanf, =

From Eq. (33), we have the stator outlet relative velocity w,

Wy = /W2 + wy,? (75)

The stator outlet total temperature and pressure at the relative reference frame

are calculated from Eq. (9) and Eq. (21) respectively

2
W, (76)
Tozrer = Ty + f
14
s
_ Tozrer\7—1 (77)
P02,rel - PZ T
2

M rer = == (78)

The flow is accelerated in the rotor by an expansion process from the total inlet
properties Ty, ., and Py, to the the rotor outlet static pressure p;. In the relative
frame, the total enthalpy in the rotor is constant (Ty; e; = To3re, EQ. (50)), thus from

Eq. (21) we can calculate the isentropic static exit temperature T g

(79)

y-1
p3 Y
T3,s = T03,rel < >

02,rel
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From Eq. (9), we can find the rotor isentropic relative outlet velocity w; g

(80)
W3s = \/ZCp (T03,rel - T3,s)

Being the value of the rotor blading efficiency . z ranging from 0.87 to 0.88 [10],
we can calculate the static temperature T;, from the definition of total-to-static

efficiency, Eq. (563)

T3 = Tozrer — Nesr (T03,rel - T3,s) (81)

Moreover, the rotor blading efficiency 1, can be expressed as the ratio of the
stator relative outlet velocity w; to the the isentropic rotor relative outlet velocity ws ,

thus we write w5 as
W3 = \/Nts,rW3,s (82)
The rotor outlet density is calculated from the ideal gas equation, Eq. (18):

— P3
P3 = R, (83)

The rotor relative outlet Mach number is determined from Eq. (19):

M3 rer = = (84)

From isentropic relation, Eq. (21), the rotor relative outlet total pressure is

calculated
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i
TO3,rel>V_1 (85)

P03,rel= P3( T
3

To calculate the rotor conditions, we will assume that there is no change of the
radius of the midspan line between the rotor inlet and rotor outlet. Then, the rotor
absolute outlet axial velocity V,.; or the rotor relative outlet angle 5 can be free choices
of the designer. Typically, it is considered that the absolute axial velocity remains
constant through the rotor and being that the axial velocity the same for both reference

frames, we have
Vis = Vi (86)
Wiz = Vis (87)

From Eq. (42), we can obtain the rotor relative outlet angle S

p3 = cos™! (@> (88)

W3
We can calculate the rotor relative outlet tangential velocity wgs
Wgz = W3 Sin 35 (89)
The rotor absolute outlet tangential velocity Vg is given by Eq. (44)

Vos = wps — U (90)
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From Eq. (38), the rotor absolute outlet angle a5 is obtained

—1 Vs (91)

We can calculate the rotor absolute velocity V; by Eq. (39)

/ (92)
Vs = szz + V632

The rotor absolute outlet Mach number is determined from Eq. (19):

M, = Vs (93)

The rotor outlet total temperature and pressure at the absolute reference frame

are calculated from Eq. (9) and Eq. (21) respectively

V.’ (94)
T T3+ —
03 3 ZCp
Toa\7-1 (99)
P = Pi(7)

Now, the power delivered by the turbine stage can be calculated from Eq. (7) or
Eq. (11)

Wi = me (Tor — To3) (96)



49
Or
W; = mU(Ve, — Vos) (97)
If the power delivered by the stage W;, given by Eq. (96) or Eq. (97), is different

from the power W expected by the turbine designer, a new value of the rotor outlet

static pressure p; needs to be specified; then the design process, from Eq. (63) to Eq.
(97), is repeated until the condition:

_ 103 (98)

T.
Ass=52—51=Cpln—2—7€lnp—2 (99)
Ty 1
T.
AsR=53—sz=Cpln—3—lenp—3 (100)
T, b2

As = Asg + Asp (101)

Where As; and Asp are the entropy increases through the stator and rotor
respectively.

If the exhaust velocity is usefully employed, the total-to-total efficiency is
calculated from Eq. (52)

AW h01 - h03
Nts =

~ (102)
AVl/max h01 - h035
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Otherwise, If the exhaust velocity cannot be usefully employed, the total-to-

static efficiency is given by Eq. (563)

AW ho1 — ho3 (103)

7’] = =
s AVVmax h'01 - h3s

With the flow properties so defined, the calculation of flow areas can be

performed, the annulus area of a turbine A4,,,,,,1.s being given by

T\ 2 (104)
Agnnutus = anz [1 - (_H> l

Using the continuity equation, Eq. (2), we can also calculate the annulus area

of the stator outlet A,:

7 (105)

A, =
2 pZVxZ

Notice that the ratio of hub radius r to tip radius 7 for high pressure turbines

is typically :—” ~ 0.9, while, for low pressure turbines is ranging from 0.75 to 0.85 for
T
front stage and from 0.60 to 0.65 for rear stage [10].
Combining Eq. (104), with Eq. (105), and using an appropriate value for :—” we
T

can calculate the tip radius r, for the stator outlet

(106)

T
o @]

The stator blade height h, is the difference between the tip radius and hub radius
(Fig. 15).
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hy = 11y = T (107)

Figure 15. Meridional view of a turbine stage [10]

Typically, the hub radius remains constant through the stage, then Ry; = Ry, .
The annulus area, the tip radius and the blade height at the rotor outlet are calculated

from

m (108)
A, =
> p3Vx3
Az + mrys? (109)
el B
hs = rr3 — Ty3 (110)

The stator inlet flow properties can be defined by calculating the stator Mach
number M; from Eq. (24). Then, using this M, value, the static temperature T, and
pressure p,; are determined from Eq. (20) and Eq. (23) respectively. The stator inlet
density p; is calculated by using the ideal gas equation, Eq. (18) and the inlet velocity

is given by Eq. (19)
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Tos (111)
h=—7"7—
1+ f5=M?
p
p, = 0; - (112)
Y — v-1
(1+ Y5—m2)
_ P (113)
'Dl_IRTl
V, = My \JyRT, (114)

The blade aspect ratio depends on mechanical and manufacturing
considerations [3]. Sieverding [10] states that typical values of the aspect ratio for the
stator are ranging from 0.5 to 0.8 and for the rotor from 1.1 to 1.5. From these values

we can calculate the chord for both stator and rotor.

The pitch to chord ratio is obtained by applying the Zweifel criterion. In particular,
Zweifel’s design rule states that losses are minimized for 0.8 < Z < 1.0 [19]. From Eq.

(61) and Eq. (62), we can calculate the pitch to chord ratio for both stator and rotor

(g) __ o —P)Z (115)
c’s  P2Vea(Voz — V1)

(g) _ (Poz,rel - Ps)Z (116)
c’r  P2Vxa(Woz — We3)

Knowing the chord, we are able to calculate the pitch for both stator and rotor

blades. Finally, we have to chose the stagger angle (Fig. 16).
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Figure 16. Stagger angle for typical gas turbine blades profiles [21]

Fig. 16 shows typical values of stagger angle based on statistical data. The

stagger angle is a function of inlet and outlet angles; absolute flow angles are used for

the stator while relative flow angles are used for the rotor [21].

The control of the design can be performed by using the guideline given by [10]:

P3

For a stage pressure ratio X ranging from 3 to 4, in case of high pressure
1

turbines, the stator absolute inlet Mach number should be in the range 0.85 <

M, < 1.2. If M, > 1.2, we must increase R. If M, < 1.2, we must decrease R.

p, has a lower limit ranging from 45°to 50° and M, ., needs to be lower than
0.5. If these conditions are not respected, there are two actions: we can increase
a, or we can increase R.

P3

For a stage pressure ratio X ranging from 3 to 4, in case of high pressure
1

turbines, the stator relative outlet Mach number should be in the range 0.85 <
M3, < 1.2. If M3, > 1.2, we must decrease R. If M3z, < 1.2, we must

increase R.

Total turning: AB < 110° - 115°, if the turning is greater, there are three

possible actions: decrease «,, decrease S5 or increase R.
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5) The blade height ratio should be in the range % < 1.1 - 1.5, in case that this
2
condition is not respected, we must decrease [ or increase a,.

6) The stator absolute outlet flow angle a; should be lower than 30°, if a3 > 30°

we need to decrease S;.

Sieverding [10] states that is important to keep a good balance between the
stator absolute outlet Mach number M, and the rotor relative outlet Mach number
M3,rel-

The mean line design is an iterative method that provides the optimum gas path;
this method involves the calculation of velocity triangles, flow properties, and blade row

geometries. Using these properties, the design of the turbine airfoil can be started.
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5 TURBINE AIRFOIL DESIGN

5.1 BLADE PROFILE METHODS

As stated by Lewis [22], there are two approaches to the blade profile design,

the direct and indirect methods.

In the direct method, the designer defines a preliminary blade profile. Then, by
means of numerical simulation, the performance parameters are calculated. Analyzing
these results and modifying iteratively the geometry, the designer can optimize the
blade profile [23].

In the indirect method, conversely, the performance parameters, in terms of
pressure and velocity profiles expected, are given; then, the designer, using
optimization methods based on numerical simulations and evolutionary algorithms,
define the final blade profile [23].

Being this approach more complex and expensive, in this work the direct
method will be used. In particular, the first tentative profile will be designed by using

the Bézier curve method.

5.2 BEZIER CURVE

A Bézier curve is a parametric curve that it is used to model smooth profiles. It
has been developed by Pierre Bézier while working as engineer for Renault. Bézier

curves method has wide applications in the computer aided design, and in the last
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years, it has been used as a tool to design turbomachinery airfoils [24]. A Bézier curve

of order n is defined by the following equation:

L 117
P(H)= D B ()P o
i=0

Where P; represent the control points, n is number of control points — 1, tis an

independent parameter which varies from 0 to 1, and B*(t) is the Bernstein
Polynomial, defined explicitly by

BM(t) = —2—ti(1 — t)n- (118)

il(n-i)!

An example of Bézier curves for different values of n is shown in Fig. 17

N Fe S

Degree 1 Degree 2
Degree 3 Degree 4

Figure 17. Bézier curves of different degree [25]

From Eq. (118) and Fig. 17, we can see that the Bernstein Polynomial acts as
a link between the points on the Bézier curve and the control points; thus for example,
3 control points result in a parabola while 4 control points describe a cubic curve. The
parameter t is used to constrain the first and last control points to lie on the Bézier

curve, while the other control points define the shape of the curve.

The first derivate of a Bézier curve of n degree is
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dP (1) (119)

n-1
= nz()(Pm—Pi)B?'l(t)
i=

This equation is useful to calculate the slope of the line tangent to these curves

at a given point.

5.3 DESIGN APPROACH

Pritchard [26] states that there are at least 25 airfoils parameters that can be
associated with any blade shape. A turbine designer must sort out which of these
parameters are known with absolute certainty. From Chapter 4, we are able to specify
the inlet and outlet flow angles, the pitch, the chord, and the stagger angle. The leading
edge radius r;z and trailing edge radius r;; are limited by mechanical constraints such
as maximum stress and deformation. Being these 7 parameters fixed, the turbine
designer can use only the curvature as a free parameter, that is the control points of

the Bézier curve. A MATLAB code has been written to design the turbine airfoil.

Based on the techniques developed by Verstraete [27], and Sousa and
Paniagua [28], the turbine blade profile design starts by the definition of a camberline,
as shown in Fig. 18, which depends on the inlet blade metal angle g,,,, the outlet blade

metal angle S,,:, the chord ¢, and the stagger angle ®.

Ppria

Camber line

Figure 18. Camber line construction [27]
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The leading edge point P,z, the middle point P4, and the trailing edge point
P are the control points of the Bézier curve that describe the camber line. The P,
point is the origin of the coordinate system. The P, point is defined by the axial chord
¢, and the stagger angle ®. The P, is the intersection between the line starting from

the point P, and the line coming from P;;. Then, we have:

Pz = (0,0) (120)

Prp = (ccos @, c cos P tan P) (121)

Pryig = Pigy — Pigxtan iy, — Prgy, + Prg,tanfoy; (122)
' tan oy — tan Py

Pyiay = Prgy + tan B (Puiax — Presx) (123)

To construct the camber line, we have 3 control points, thus a polynomial of
second order. From Bézier curve equations, Eq. (117) and Eq. (118), we can obtain

the x and y coordinates of the camber line

Pcamber,x = (1 - t)ZPLE,x + 2(1 - t)PMid,x + tZPTE,x (124)

Pcamber,y = (1 - t)ZPLE,y + 2(1 - t)PMid,y + tZPTE,y (125)

The suction and pressure sides are also defined by the Bézier curves, whose
control points are specified by the normal distance relative to the camber line. The first
and last control points are the leading and trailing edge points respectively. For the
second control point of both sides the distance is computed by using the leading edge
radius; in this way, we can guarantee the minimum thickness of the leading edge. The

second last control point for both sides is specified by the trailing edge radius. The
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reason to use this point is to guarantee the minimum thickness of the trailing edge. In
order to keep the geometric continuity of the trailing edge region, we need a third last
control point for both sides, which depends on the trailing edge wedge angle a; . In
this work, the suction side is defined by using 10 control points, 5 of them being free
parameters while the pressure side is defined by 8 control points, 3 of them being also
free design parameters. The reason of using more control points for the suction side
with respect to those used for the pressure side, is that the losses production is higher
on suction side; therefore, the turbine designer needs to have finer control of the

curvature on the suction side.

Leading

1T _ edge
/ radius

l'U
—
m

[ - = —
1° Control Point |

|

PN

X Pz\ _—
~N
A ~
2" Control point PS . \ Camber line
N

Figure 19. Leading edge parameterization

The positons of the second control point of the suction and pressure side are
defined by:

Pyyss = Prpx —Tig cos(90 — Bn) (126)
Pyyss = Prpy + 1 sin(90 — B;y) (127)

Py ps = Pixss + 1p c0s(90 — B) (128)
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P2y,PS = Ply,SS — 15 sin(90 — Biy) (129)
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\
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1 pg | )
X P9 . —¥ control point
-

\
-
\ P7 _ =",
- P,TE\A
/ Last control

point

control point

Second last
control point

Figure 20. Trailing edge parameterization

The positions of the second last control point of the suction and pressure side

are
Poxss = Prgx + 2rrg c0S(Boye + 90) (130)
Py ss = Prgy + 21rpg sin(Boye + 90) (131)
P7yps = Prgx — 2rrg €0S(Boye + 90) (132)
Py, ps = Prgy — 2rpg sin(Boye + 90) (133)

The positions of the third last control point of the suction and pressure side are

Tre
Pgyss = Poxss — —2 sina cos(arg — Bout) (134)
LE
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Tre .
Pgy, g5 = Poy s + S sing - sin(a,g — Bout) (135)
LE
Tre
Pox,ps = Pxps — —2 Sing cos(—ar g — Bout) (136)
LE
TTE (137)

Peyps = P7yps + msm(—aw — Bout)

LE

The suction side parameterization is shown in Fig. 21. The point i on the camber
line (X;,Y;) and the distance d; from this point to the control point P; s; are free choices
of the designer. In order to draw the suction side curve, it is necessary to find the

position of the control points (P; to P;). The coordinates of these control points are

calculate by

Pix,SS = Xi,camber +d; COS((pi,SS) (138)

Piy,SS = Yi,camber +d; Sin(‘ﬂi,ss) (139)

:, Trailing edge

Camber Line

Figure 21. Suction side parameterization
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Where ¢, is the slope angle of the line normal to the camber line curve at the
pOint (Xi) Yl)

1 (140)
tan q;

tan@;ss = —

In order to calculate ¢; 55, we have to define the slope of the tangent line to the

camber line curve at (X;, Y;). By definition, the slope of the tangent line, tan a, is defined

by:

dPiy,camber (141)

tan a; =
dP ix,camber

The derivatives above are calculated by Eq. (119) or by doing the derivative of
equations, Eq. (124) and Eq. (125).

The control points of the pressure side are obtained in a similar way, Fig. 22.
The difference is in the number of control points (P; to Ps), thus in the position of the

camber line points, and in the slope of the normal line, which is defined by

@ips = 90 — q; (142)

Leading edge T~ .

Y Camber Line

'Trailing edge

Figure 22. Pressure side parameterization
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With the control points of both sides defined, from Bézier curve equations, Eq.
(117) and Eq. (118), we can obtain the suction and pressure side curves, thus the

turbine airfoil.
- Suction side
Xss = (1 = t)°Ppg, + 9t(1 — t)®Pyy 55 + 36t*(1 — t)7 P3ye 55
+84t3(1 — ) Py55 + 126¢* (1 — t)*Psy 5
+126t5(1 — t)*Pgyss + 84t°(1 — t)3P; 55

(143)

+36t7(1 — t)?Pgy55 + 9t3(1 — )Py g5
+ t2Prg 5

Yss = (1= t)°Prp, + 9t(1 — t)8P,, 55 + 36t%(1 — t)7P3y g5
+ 84t3(1 — t)®Pyy, 55 + 126t*(1 — t)°Ps, 55
+126t°(1 — t)*Psy 55 + 84t°(1 — t)*Pyy 5 (144)
+36t7(1 — t)*Pgy 55 + 9t3(1 — t)Pyy 55
+t°Prg,

- Pressure side

xps = (1 = )" Prpy + 7t(1 — t)6Pyy ps + 21t%(1 — £)° Py ps
+ 35t3(1 - t)4P4_x,ps + 35t4(1 - t)3P5x,PS (145)
+ 21t°5(1 — t)?Pgy ps + 7t(1 — t) Py ps
+ t"Prgy

yps = (1 — t)7PLE,y + 7t(1 — t)GPZy,PS + 21t%(1 - t)5P3y,PS
+ 35t3(1 - t)4P4—y,PS + 35t4(1 - t)BPSy,PS (146)

+21t5(1 — t)*Pgy ps + 7t°(1 — )Py, ps

+t"Prgy

Fig. 23 shows an example of turbine airfoil generated by the MATLAB code,

which is based on the procedure discussed.
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Figure 23. Axial turbine airfoil

Noticed that the throat region can be controlled by adjusting the control points

of both surfaces in order to obtain the required throat size.
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